Addressing Inadequate Information on Important Health Factors in Pharmacoepidemiology Studies relying on Healthcare Databases

Efe Eworuke, Ph.D.

Division of Epidemiology (DEPI)
Office of Surveillance and Epidemiology (OSE)
Center for Drug Evaluation and Research (CDER)
Outline

• Background – Drug safety and pharmacoepidemiology studies

• Background – Confounding concepts

• Select Examples

• Workshop goals and agenda
Background: Evaluation of Drug Safety

• Knowledge about the safety of a new product is incomplete at approval
 – Evidence drawn from non-clinical data and clinical trials
 – Safety signals before approval may lead to requirement of post-approval studies
 • Pharmacosurveillance, pharmacoepidemiology, clinical trials

• New safety signals may arise after approval
 – Increased use by a broader and more diverse population
 – May be evaluated from drug utilization studies, spontaneous case reports, case series or post approval clinical trials and observational studies
Background: Pharmacoepidemiology in Drug Safety

- Population-based approach
- Reflects drug use patterns in the general population
- Ability to capture the clinical experience of a large number of people over time
 - Suitable source for studying safety of medications
- Prospective or retrospective data collection
 - Existing healthcare data sources are increasingly being utilized
 - FDA issued guidance on conducting and reporting pharmacoepidemiologic safety studies

Background: Retrospective data analysis

Advantages

• Timely evaluation of safety signals
• Large number of persons followed over time
• Broad diverse populations e.g. children, pregnant women, patients with multiple health conditions
• Absence of invasive recruitment and follow-up procedures

Limitations

• Repurposing of claims data for research
• Inadequate / unavailable information on key covariates
Confounding in Observational Post-Approval Studies

• Causality requires
 – Exposure status
 – Outcome status
 – Each individual’s “counterfactual outcome” (unobserved outcome state based on unobserved exposure status)

• Counterfactual outcomes
 – Not observed, missing
 – (Ideal) Randomized: missing is random; comparability
 – Non randomized: absence of comparability (no exchangeability) since exposure is related to other factors
Confounding in Observational Post-Approval Studies

- Effects of the exposure on outcome become mixed, or *confounded* due to a third factor

```
Exposure  ---------------> Outcome

Confounder(s)

Backdoor path
```

- Confounding arises when treatment (exposure) and outcome share a common cause
Confounding in Observational Post-Approval Studies

- The *Backdoor path* can be blocked by conditioning on measured covariates that are not a consequence of treatment

- The strength of evidence of studies is directly related to ability to eliminate known, measureable *backdoor paths*

Universe of several backdoor path:
- Measurable
- Measurable but poorly captured
- Known but unmeasurable
- Unknown
Select Examples

• Illustrate challenges in using existing (claims) databases in the evaluation of drug safety
 – Particularly as related to absence/inadequate information on confounding factors

• Example 1: Medication exposure in pregnancy and birth defects
• Example 2: Drospirenone-containing contraceptives and VTE
Example 1: Medication exposure in pregnancy and birth defects

- Neural tube defects (NTDs): group of anomalies of CNS from failure of neural tube to close
 - Most severe forms: anencephaly and spina bifida
 - Four to six per 10,000 live births (likely under-estimated)
 - Genetic and environmental risk factors
 - Folate deficiency has been identified as a major preventable risk factor linked to an increased risk of NTDs.
 - Prenatal folate supplementation and fortification of foods as public health measures to reduce NTDs
Example 1: Medication exposure in pregnancy and birth defects

- Medications that can affect availability of folic acid may increase risk of NTDs
 - E.g. trimethoprim-sulfamethoxazole during pregnancy

- Published literature is conflicting
 - Most studies obtained information on maternal exposure and confounding factors through interview
 - Recall bias is a concern in many studies
 - Studies in large existing claims databases may circumvent this issue, but information on folic acid intake and other factors is not adequate
Example 1: Medication exposure in pregnancy and birth defects

Trimethoprim/sulfamethoxazole
And other folic acid Antagonists (FAA)

Neural Tube Defects

Confounder(s)

Possible backdoor paths:
1. Alcohol and smoking information (measurable but poorly captured)
2. Folic acid supplementation (known but not captured)
Example 2: Drospirenone-containing contraceptives and VTE

- Drospirenone (DRSP) containing contraceptives are derivatives of the endogenous hormones, estrogen and progestin.

- Act as extensions of the physiological effects of these hormones.

- Risk of Venous Thromboembolic events (VTE) increased by hormonal contraceptives.

- To improve cardiovascular risk profile:
 - Reduction in the delivered estrogen dose (50µg to 20-35µg)
 - Newer progestins molecules
 - DRSP: lack of weight gain, antimineralocorticoid activity.
Example 2: Drospirenone-containing contraceptives and VTE

- Conflicting evidence for DRSP-VTE association
- Studies based on personal interviews show no increased risk of VTE when DRSP is compared to other frequently prescribed oral contraceptives

- Vast majority of studies based on electronic or claims-based data show increased risk

- It remains unknown whether the increased risk observed is due to inadequate adjustment of confounders such as family history, BMI, smoking that are poorly captured
Example 2: Drospirenone-containing contraceptives and VTE

Drospirenone containing Oral contraceptives ───────────────> Venous Thromboembolism

Confounder(s)

Possible backdoor paths:
1. Smoking, BMI (measurable but poorly captured)
2. Family history of VTE (known but not captured)
The bottom line

• Design and analytical tools can be used to account for confounding

• Modest drug-associated increased in risk, it is often difficult to rule out role of (residual, unmeasured) confounding

• Understanding the impact of poorly measured confounding variables on observed risk estimates will help make these data more useful for regulatory decision making
Goals of the workshop

• Initiate discussions on creative strategies to improve the capture of potential confounders in studies using electronic health care data

• Facilitate constructive dialogue on potential strategies for making inferences using information from other sources for poorly captured confounders

• Discuss methodological considerations to minimize the influence of residual/unmeasured confounding
Workshop Agenda

- **[9:00] Session 1: Introduction**
 - Background Presentations by the FDA and UMD

- **[10:15] Session 2: Creative Methods to improve confounding information**
 - Theme 1: Supplementing data with surveys and linkages
 - Theme 2: Making greater use of the data at hand

- **[15:30-14:45] Session 3, Panel Discussions**
Thank you!