Two-Phase Study Designs to Improve Efficiency of New Data Collection

Sascha Dublin, MD, PhD Group Health Research Institute May 4, 2015

Outline

- Background and examples
- Introduction to methodology
- Analytic approaches
- Use of simulation studies to guide decisions

More information

 http://www.mini-sentinel.org/ work_products/Statistical_Methods/Mini-Sentinel_Methods_Supplemental-Information_Two-Phase-Study-Designs.pdf

Background

- Bias can arise in studies using automated data when important measures are omitted or not accurate
- Sometimes there are opportunities to collect additional data on a subgroup
 - Medical record review
 - Surveys, interviews, biologic specimens, etc.
- How best to select that subgroup?

Example 1

- Healthy pregnant woman at 39 weeks asks: what are risks and benefits of inducing labor?
 - Inadequate data from RCTs
 - Observational studies suggest higher risk of cesarean delivery or newborn needing ICU care
- Many studies use automated data and/or birth records which contain inaccurate measures of induction and its indications
 - Algorithm for elective induction using automated data had PPV 36%
- Need better measures of exposure and key confounders (indications)

Example 2

- Mini-Sentinel project: does saxagliptin (used for diabetes) increase risk of myocardial infarction compared to other therapies?
- Automated/claims data
 - Scant information about smoking, obesity, and other risk factors
- If a signal emerged, would likely want to review some medical records to validate outcomes and measure confounders

Introduction to Methodology

- Two-phase studies are used to estimate the association between an exposure and outcome when:
 - A large (phase 1) sample is available that contains outcome and exposure information; and
 - Additional information is needed and can be collected for a subsample (phase 2).
 - Can be about potential confounders, outcome or exposure.

A Simple Scenario

Data available at phase 1:

Exposure (X) and binary outcome (Y) are both observed without error

Data to collect at phase 2:

Confounder information (Z) that can only be obtained using more intensive data collection (e.g., medical record review)

Goal: Collect confounder information and estimate the exposure-outcome association using

$$logit(P(Y = 1|X, Z)) = X\beta + Z\beta_z$$

Phase 1

	Outcome (Y)		
Exposed (X)	Yes	No	
Yes	N ₁	N ₂	
No	N ₃	N ₄	

- Phase 1 sample size is $N = N_1 + N_2 + N_3 + N_4$
- Phase 2 sample size is n drawn from N
 - Additional confounder data, Z, is collected for these n observations
- How should we select these n observations?

Simplest option: a random sample of n drawn from N

	Outcome (Y)		
Exposed (X)	Yes	No	
Yes	N (N ₁ + N ₂ + N ₃ + N ₄)		
No			

- Other choices: stratified on outcome only (case-control) or exposure only
- 2-phase design needs to specify:
 - How will the phase 1 sample be stratified, and
 - How will the phase 2 sample be selected from these strata.

Usual Approach

Sample based on both outcome and exposure:

	Phase 1		Phase 2	
	Outcome (Y)		Outcome (Y)	
Exposed (X)	Yes	No	Yes	No
Yes	N ₁	N_2	n ₁	n ₂
No	N_3	N_4	n ₃	n ₄

 Stratify the phase 1 data on basis of both exposure and outcome, then take random sample from each of the four cells

Balanced Design

	Phase 1		Phase 2	
	Outcome (Y)		Outcome (Y)	
Exposed (X)	Yes	No	Yes	No
Yes	N ₁	N_2	n	n
No	N_3	N_4	n	n

- Sample the same number from each stratum
- The probability of selection varies across strata.
 Patients in small phase 1 strata have a higher probability of selection.
- This oversampling of patients from small strata improves efficiency.

More on Simple Scenario

- Exposure (X) and binary outcome (Y) are both observed without error at phase 1
- The two-phase design, stratifying on both exposure and outcome, is at least as efficient* as other sampling designs.
- Efficiency gains are greatest when both the exposure and outcome are rare.

**Efficient* refers to the precision of an estimate. A more efficient design gives you greater precision for the same sample size than a less efficient design.

Other Scenarios

Data available at phase 1:

- Error-prone exposure, outcome observed without error. Two-phase studies are an extension of case-control studies.
 - Most common in the statistical literature
 - Sampling on available exposure and outcome information is never a disadvantage in terms of efficiency
 - Larger efficiency gains when there is less error in exposure measure and the available exposure and outcome are more strongly associated.

Other Phase 2 Scenarios

Data available at phase 1:

- 2. Error-prone outcome, exposure observed without error.
 - Uncommon in the statistical literature
 - Analogous to Scenario 2 above
- 3. Both exposure and outcome are observed with error.
 - Very little statistical research in this area.
 New methodology development is needed.

Goal: estimate the association between exposure and outcome using logistic regression

$$logit(P(Y = 1|X, Z)) = X\beta + Z\beta_z$$

Three common estimation approaches are based on different formulations of the likelihood:

- 1. Weighted likelihood
- 2. Pseudo or profile likelihood
- 3. Maximum likelihood

Analysis of Two-Phase Data

- 1. Weighted likelihood
 - Simple but inefficient
 - Inversely weight observations based on selection probabilities
- 2. Pseudo or profile likelihood
 - Addresses selection probabilities by including offset terms (variables with coefficients set to 1)
 - Well developed in the statistical literature. Some work still needed for certain scenarios.
- 3. Maximum likelihood
 - Most efficient approach, but much more complicated to implement

Role of Simulations

- Repeated analysis of randomly generated datasets used to examine the operating characteristics of a statistical procedure in a hypothesized setting
- Useful for complex settings where established procedures may have uncertain behavior
- Can explore the potential benefits of a 2-phase study and also consequences of different design choices.
 - How to stratify phase 1 data
 - Sample size for phase 2
 - Different analytic approaches

Process

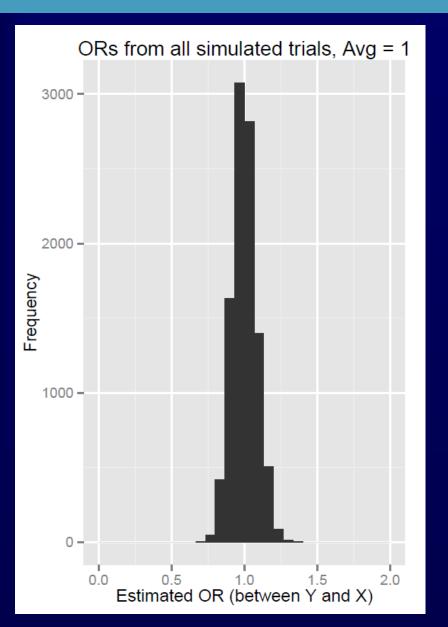
- Generate hypothetical dataset
- Perform the analysis
- Repeat many times
- Analyze results:
 - Bias: does the process on average yield parameters equal to the true value?
 - Coverage probability: how often do 95% CIs from these analyses contain the true value?
 - Power

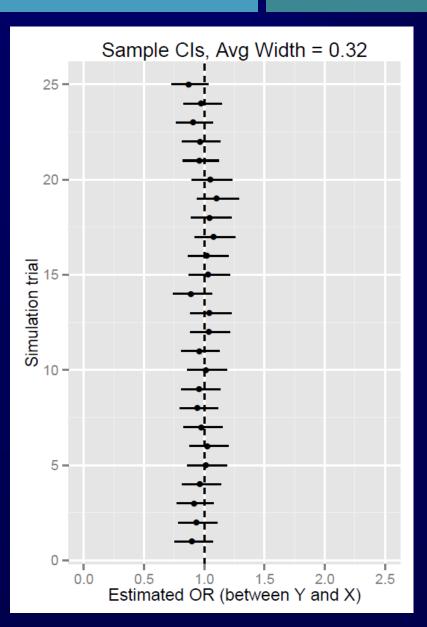
Example 2: Saxagliptin

- Suppose the Mini-Sentinel surveillance efforts detected a signal: higher risk of MI with use of saxagliptin
- Might want to review medical records, using 2phase design
- Simulation can examine:
 - Who and how many to sample for Phase 2?
 - What is the estimated bias reduction?
 - How precise might estimates be?

Simulation Parameters

- Population of 150,000 including 20% using saxagliptin
- Outcome incidence: 1/100
- Assumed no true association between exposure and outcome (OR 1.0)
- Confounders: smoking and obesity
 - Assumed prevalence and association with MI based on the literature
 - Assumed no information from administrative data
- These would yield a OR of 1.44 (95% CI 1.28-1.61) spuriously high due to confounding


Simulation Question



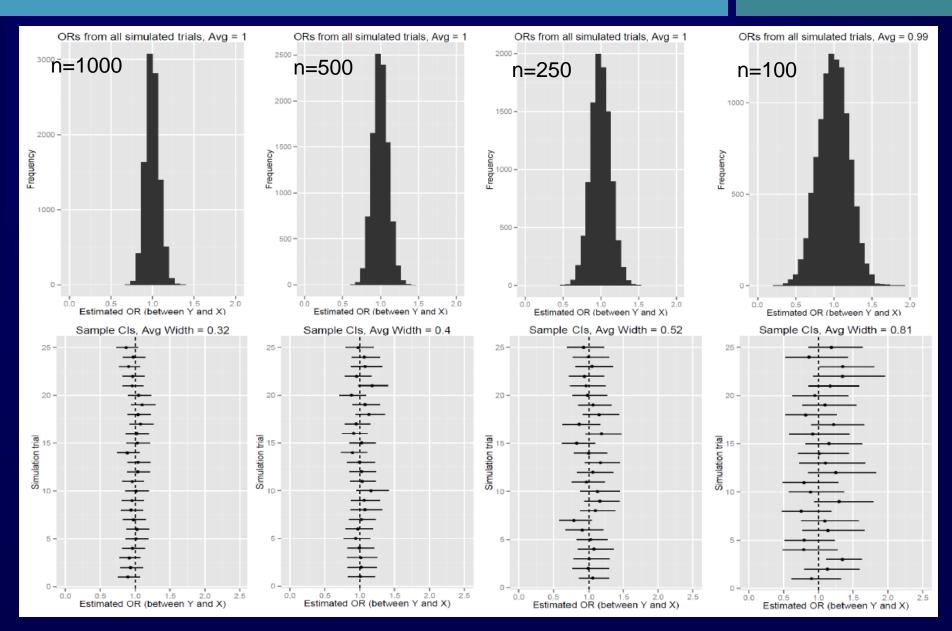
If we selected 1000 people for medical record review using a balanced 2-phase design, would this be helpful?

Simulation Results: Pseudo/Profile Likelihood

Results: Coverage Probability

Odds Ratio	% of simulated Cls that excluded it
1.0	5
1.1	20
1.2	62
1.3	91
1.4	99
1.5	100

In this setting, a balanced two-phase design selecting 1,000 people for detailed review would probably be useful.



 Vary the size of the Phase 2 sample: 1000, 500, 250, or 100

How might this affect bias and efficiency?

Results

GroupHealth

Summary

- Simulation can be used to examine the potential usefulness of conducting a 2-phase study in a particular setting
- Can explore the potential impact of design decisions
- Simulation code available in R for more information, see Mini-Sentinel workgroup report

- 2-phase studies target the most informative people for review when supplemental data collection is needed
- Increases efficiency
- Key design elements include how to stratify Phase 1 sample and how to select the Phase 2 sample
- Simulations can provide some guidance

More information:

 http://www.mini-sentinel.org/ work_products/Statistical_Methods/Mini-Sentinel_Methods_Supplemental-Information_Two-Phase-Study-Designs.pdf

