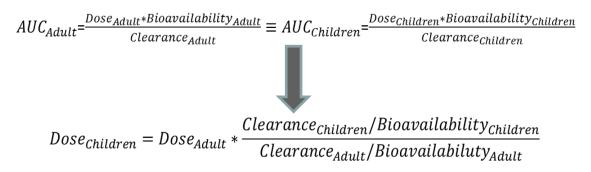
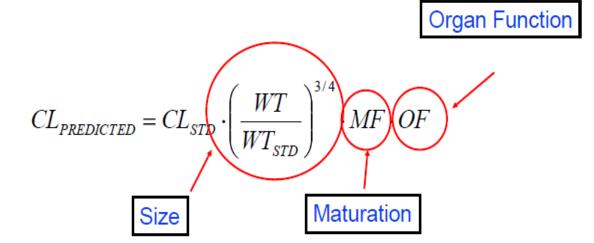
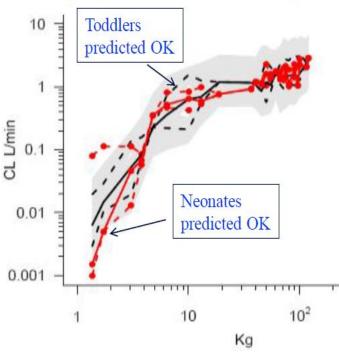
MCM Pediatric Dose Selection – Case Presentation


Jiang Liu
Division of Pharmacometrics
Office of Clinical Pharmacology
OTS/CDER, FDA


Outline

- Pediatric dose scaling based on allometry
- Levofloxacin pediatric dose for anthrax/plague
- Raxibacumab pediatric dose for inhalational anthrax
- Summary and moving forward

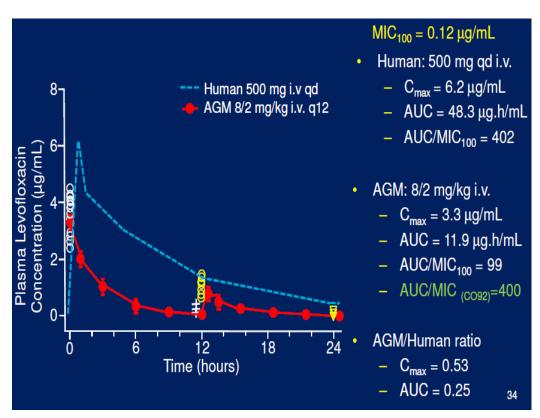

Pediatric Dose Scaling Based on Allometry

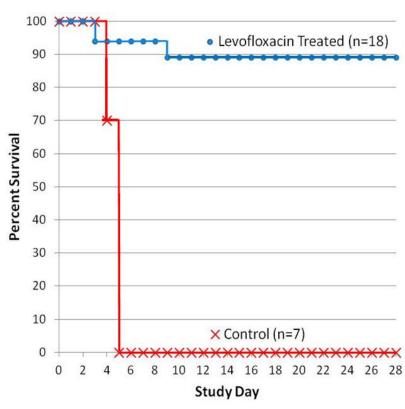
http://holford.fmhs.auckland.ac.nz/docs/tips-and-traps-in-pediatric-PKPD.pdf

³/₄ Allometry + Maturation explains 80% of CL variability

Propofol clearance

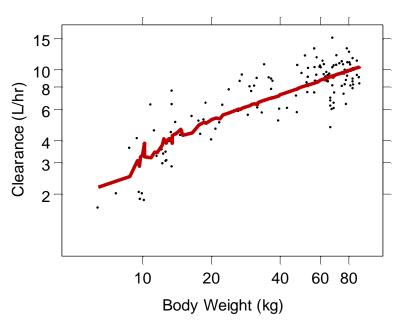
Case Study 1: Levofloxacin for Pneumonic Plague


Levofloxacin


- First approved in 1996
- Indications:
 - ✓ Various bacterial infection
 - ✓ Inhalational anthrax, post exposure (2004, 2008 pediatric)
 - ✓ Plague (2012)
- Dose Ranges
 - ✓ 250mg QD x 3 days (UTI)
 - ✓ 500mg/750mg QD x 5 -14 days (CAP)
 - √ 750mgQD x 7 14 days (noscomial pneumonia)
 - ✓ 500mg QD x 60 days (anthrax)

Adult Dose for Plague

500 mg QD (greater exposure than those with 8/2 mg/kg q12 in AGMs)


http://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/Anti-InfectiveDrugsAdvisoryCommittee/UCM299775.pdf

Pediatric Dose for Anthrax/Plague

Derived from modeling and simulation based on PK data from both pediatrics and adults

$$CL = \alpha \cdot WT^{\beta} \cdot [Age/(Age + A_{50})] \cdot exp(\eta)$$

Patients < 50 kg: 8 mg/kg BID (up to 250 mg/dose)

Patients > 50 kg: 500 mg QD

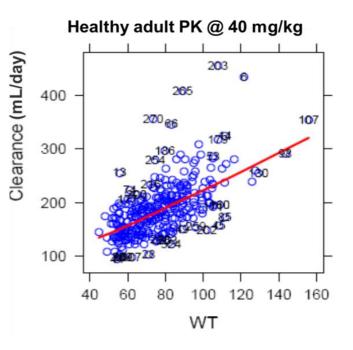
Age	PK parameter		
	AUC _{0-24,ss} (µg.h.ml)	$C_{ m max,ss}$ (µg/ml)	$C_{\min, ss (\mu g/ml)}$
6 mo to < 2 yr 2 to <5 yr 5 to <10 yr 10 to 18 yr Adult ^b	51.7 (26.8–75) 50 (41.7–65.2) 55.6 (46.9–83.3) 55.7 (42.0–83.5) 47.7 (41.8–55.1)	5.6 (3.2–7.3) 5.4 (4.2–6.6) 5.4 (3.7–7.1) 6.3 (4.6–8.1) 5.5 (5.0–6.8)	0.6 (0.26–1.2) 0.6 (0.25–1.1) 0.9 (0.38–1.6) 0.6 (0.2–1.4) 0.4 (0.3–0.55)

Case Study 2: Raxibacumab for Inhalational Anthrax

- First biologics approved based on the Animal Rule
- Antitoxin agent mAb binds to the *Protective Antigen* (*PA*) of anthrax bacterium
- Dose (infusion over 2 hours and 15 minutes)
 - ✓ Adults: 40 mg/kg
 - ✓ Pediatrics > 50 kg: 40 mg/kg
 - ✓ Pediatrics > 15 and ≤ 50 kg: 60 mg/kg
 - ✓ Pediatrics ≤ 15 kg: 80 mg/kg

No studies in the pediatric population. Dosing in pediatric patients was derived from a population PK approach.

Determination of Pediatric Dose

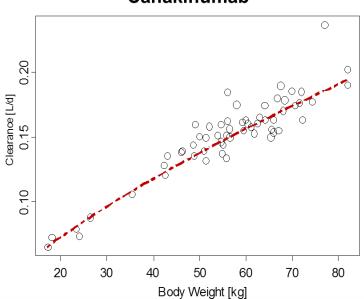

40 mg/kg regimen for adult patients based on animal efficacy studies and human PK/safety studies

Workflow to Determine the Pediatric Dose

- Learn from adult population PK analysis
 - ■The relationship between PK parameters vs body weight
 - Inter-subject variability
 - Residual variability
- Simulate pediatric PK profiles using different dosing regimens
 - Various combinations of dose and body weight band
- Select a pediatric dosing regimen
 - •Match the exposure (e.g., AUC) observed in adults at 40 mg/kg
 - Simple to implement

Learn from Adult Population PK

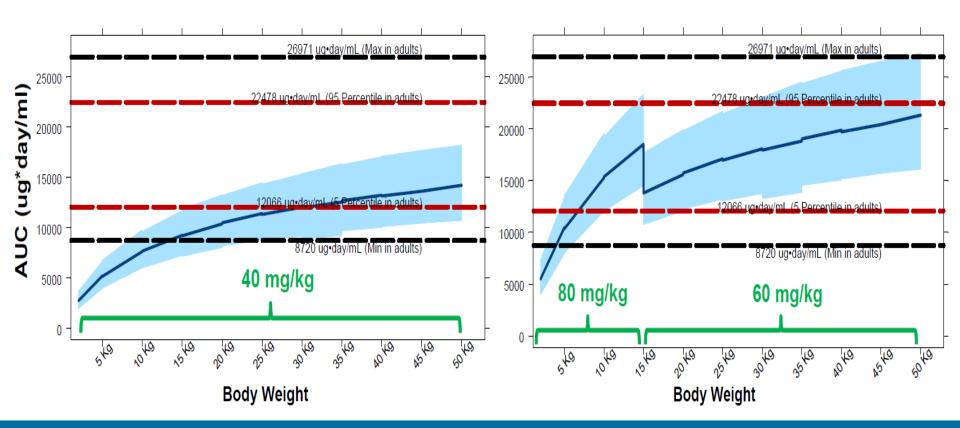
Population PK modeling


$$\widetilde{CL} = \theta 1 * (WT / 70)^{\theta 2}$$

*θ*2 (Exponent): 0.796

Assuming the same PK-BW relationship is applicable to the pediatric population

- Eliminated by non-specific proteolysis (minimal effect of maturation for <2 yrs on mAb PK)
- Similar phenomenon: Canakinumab, Infliximab, certolizumab, basiliximab



Simulation and Pediatric Dose Selection

Following adult dose of 40 mg/kg

- ✓ Pediatrics > 50 kg: 40 mg/kg
- ✓ Pediatrics > 15 and \leq 50 kg: 60 mg/kg
- ✓ Pediatrics ≤ 15 kg: 80 mg/kg

Summary and Moving Forward

Modeling and simulation is critical for MCM pediatric dose selection

- Dosing selection is mainly based on PK matching to adults
- Current experience mainly based on allometric scaling from adults
 - Levofloxacin
 - > PK/Safety information in pediatrics
 - Organ function/maturation is important for children < 2 yrs</p>
 - Raxibacumab
 - > Purely derived from modeling and simulation
 - Maturation seems less important for mAb
- Moving forward: Role of PK/PD and PBPK(/PD)?

Acknowledgements

- Fang Li
- Jerry Yu
- Kevin Krudys
- Kimberly Bergman
- Yaning Wang
- Vikram Sinha