

EMA experience with paediatric PBPK

Ine Rusten, Ph.D Scientific officer, The Norwegian Medicines Agency Member of PDCO and MSWG, EMA

Disclaimer

The opinions expressed during this presentation are those of the speaker, and not necessarily those of the Norwegian Medicines Agency, the EMA or one of its committees or working parties.

The paediatric regulation

The paediatric regulation was introduced in Europe in 2007 in order to:

Improve the health of children

- Increase high quality, ethical research into medicines for children
- Increase availability of authorised medicines for children
- Increase information on medicines

Achieve the above

- Without unnecessary studies in children
- Without delaying authorisation for adults

Paediatric investigation plan (PIP)

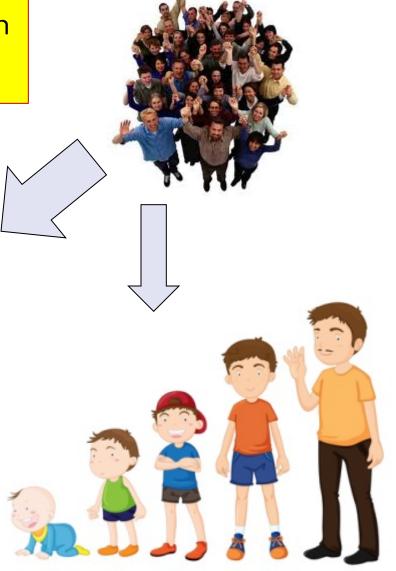
Intended to support a potential indication ('paediatric use") in all subsets of the paediatric population

Data on efficacy, safety and age-appropriate formulation

Timelines for start and completion of trials

Binding EMA decision on the development plan

Waivers possible if


- Potentially harmful or ineffective
- No significant therapeutic benefit expected in children
- Disease to be treated does not occur in children

Extrapolation in drug development

The inference from the investigated population to the broader population or to subpopulations

Paediatric dose selection strategies - pharmacology

Sources of prior data

- Adult data
- Paediatric data in other indications
- Adult and/or paediatric data for similar substances
- Animal data
- In vitro data

• ..

Strategies for analysis

- Pop-PK/PKPD
- Bayesian analysis
- Frequentist multivariate regression
- Allometric scaling (<?y)
- PBPK
- Combination of methods

• ..

Optimizing study design

- CTS
- Optimal sampling
- ...

- What criteria to set for determining PK(/PD) endpoints?
- How to proceed if PK(/PD) is not as expected?

The place for PBPK in drug development

Expanding use the last decades

- from use in environmental tox to
- scaling from animals to humans and now
- extensive use in pharmaceutical drug development
 - drug formulation development
 - DDIs
 - subpopulations such as paediatrics

The advantage being the mechanistic basis which, when scientifically well founded, allows greater confidence in extrapolation outside the studied population.

The use of extrapolation, when adequately justified and adequately reported is encouraged by the EMA.

Several means taken to encourage the use and increase the quality of extrapolation

- European Medicines Agency-European Federation of Pharmaceutical Industries and Associations modelling and simulation workshop (2011)

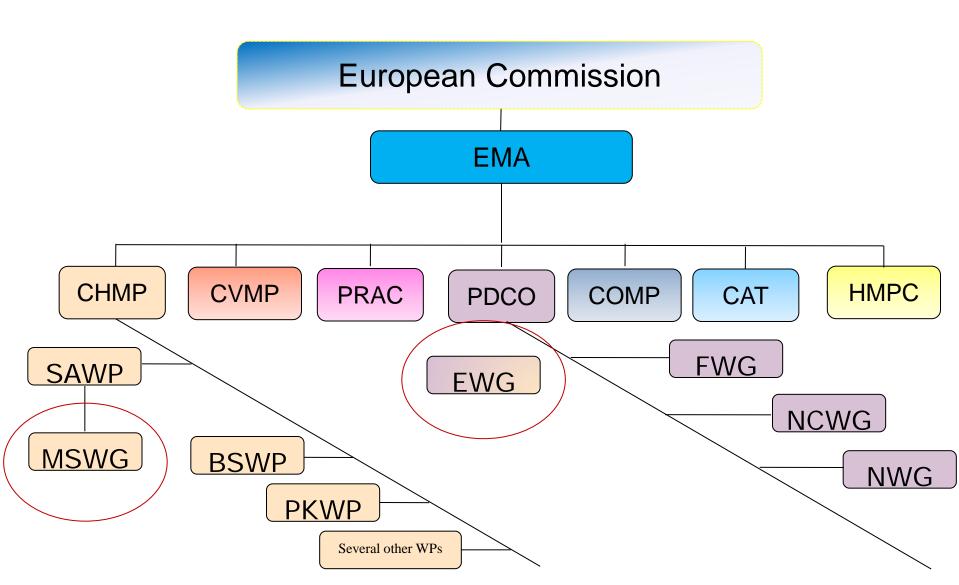
http://www.ema.europa.eu/ema/index.jsp?curl=pages/news_and_events/events/2011/07/event_detail_0 00440.jsp&mid=WC0b01ac058004d5c3

 Specific tables within the Summary Report and opinion to be completed when PBPK are suggested or requested by the PDCO.

Eupopean regulatory view on extrapolation

Lessons learned:

The need for a conceptual framework for all aspects of extrapolation



22 June 2012 EMA/129698/2012 Human Medicines Development and Evaluation

Concept paper on extrapolation of efficacy and safety in medicine development

Draft

The **objective** of this concept paper is to develop a framework for an explicit and systematic approach which sets out i) when, ii) to what extent, and iii) how extrapolation can be applied

Impact on regulatory decision

Regulatory view on M&S

Impact of the M&S exercise on benefit-risk decision and level of regulatory scrutiny?

High impact

Scientific Advice, Supporting Documentation, Regulatory Scrutiny +++

Medium impact

Scientific Advice, Supporting Documentation, Regulatory Scrutiny ++

Low impact

Scientific Advice, Supporting Documentation, Regulatory Scrutiny +

Regulatory impact applied to PBPK applications

High

To support waiver of an in vivo study for substrate of CYP enzymes.

Medium to high

To predict optimal doses in different age and weight categories of children.

Low

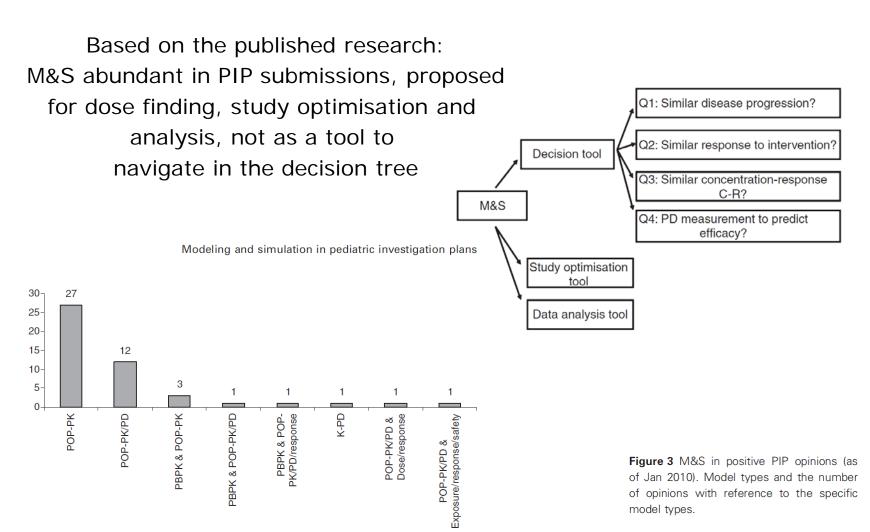
To provide quantitative evidence of the plausibility of mechanisms important for the disposition of the drug

High

To support waiver of an in vivo study for inhibitor of CYP enzymes

High

To support SmPC statements regarding the need to adjust dosage for drug combinations not tested


Key points:

Impact ≠ Value Certainty ≠ Value

Slide from T. Shepard, 2014

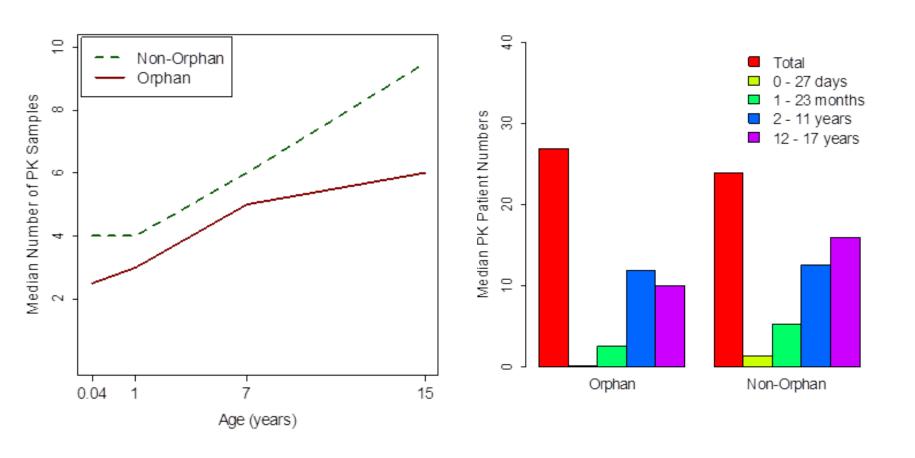
Modeling and simulation in PIPs

Paediatr Anaesth. 2011 Mar; 21(3): 214-21. doi: 10.1111/j.1460-9592.2011.03523.x. Epub 2011 Jan 18.

Role of modeling and simulation in pediatric investigation plans.

Manolis E, Osman TE, Herold R, Koenig F, Tomasi P, Vamvakas S, Saint Raymond A.

Dose-investigations i PIPs

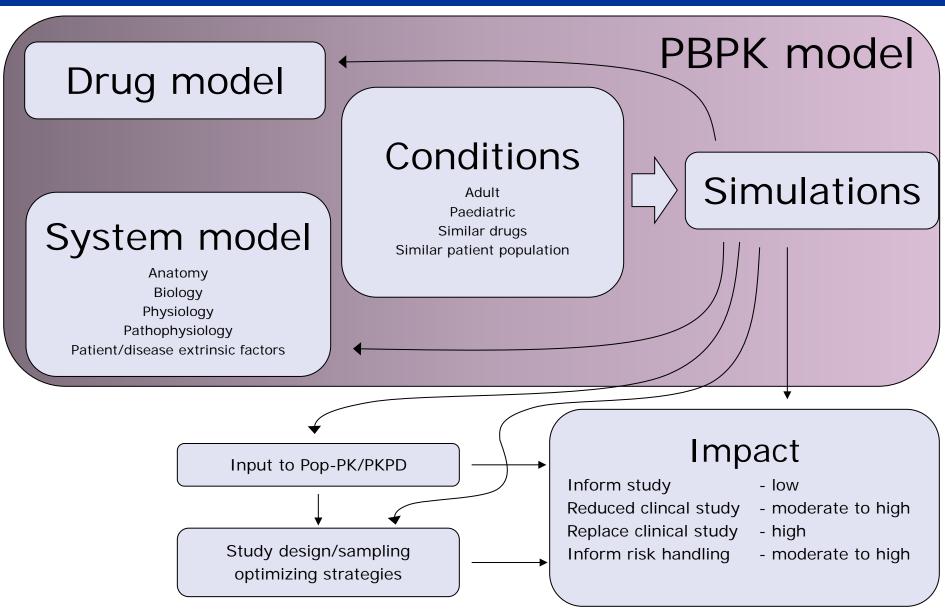


	1
Analysis technique	
Descriptive analyses	73 (90.1%)
summary statistics including confidence intervals; graphics; summaries of PK	
or PD parameters	
PK modelling	41 (50.6%)
fixed effect or population PK models	
DV DD modelling	17 (21 09/)
PK-PD modelling	17 (21.0%)
including exposure-response, PK-response models	
Dose-response modelling	10 (12.3%)
including dose-PD (eg, ANCOVA model), dose-toxicity, dose-PK-PD models	10 (12.570)
merating dose-1D (eg, 711 (CO V71 model), dose-toxicity, dose-1 R-1 D models	
Physiologically-based PK modelling	3 (3.7%)
Thysiologically based in modelling	3 (3.770)
Dose-exposure modelling	3 (3.7%)
Dose exposure moderning	3 (3.770)
Other	22 (27.2%)
Formal hypothesis testing on efficacy or PD endpoints; non-parametric time-to-	22 (27.270)
event analyses; other types of models not captured above	

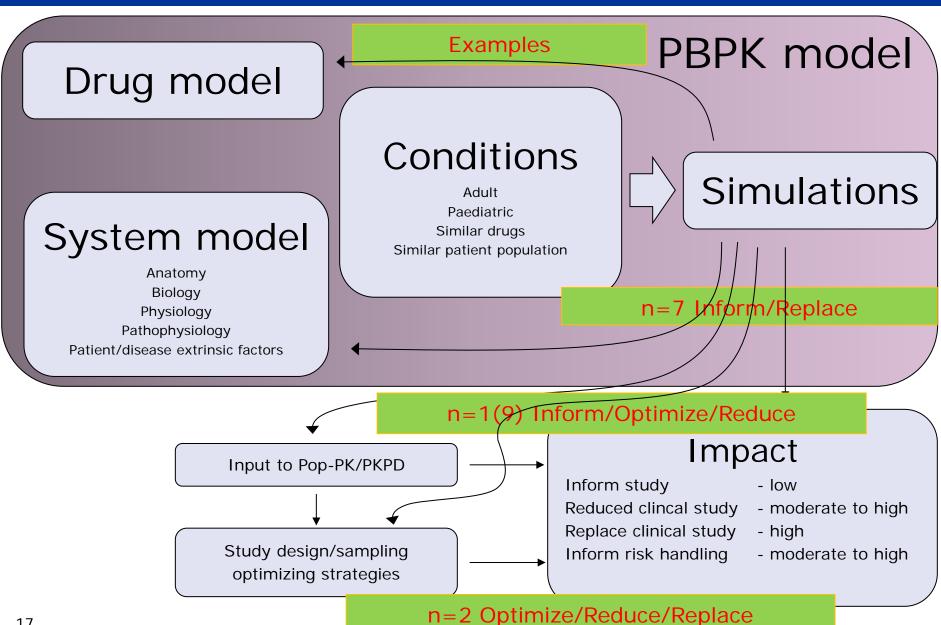
Br J Clin Pharmacol. 2014 Apr 10. doi: 10.1111/bcp.12402. [Epub ahead of print] Bridging the gap: A review of dose-investigations in paediatric investigation plans.

Dose-investigations i PIPs

Br J Clin Pharmacol. 2014 Apr 10. doi: 10.1111/bcp.12402. [Epub ahead of print] Bridging the gap: A review of dose-investigations in paediatric investigation plans.

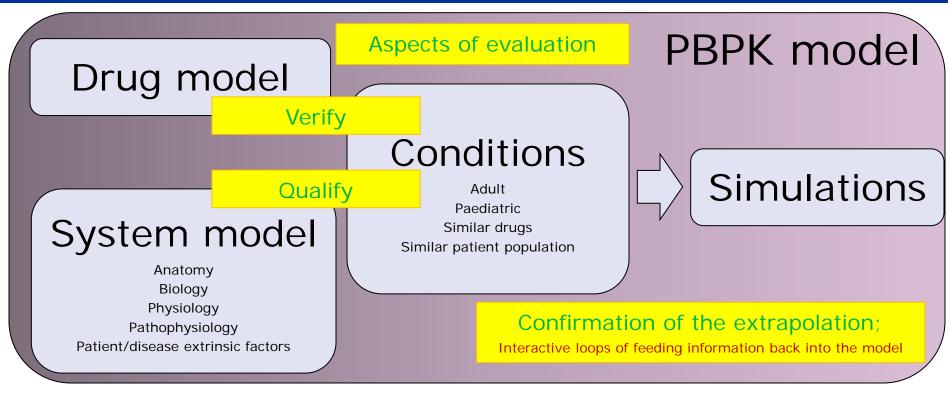

Submissions – PBPK examples

Procedure (Committee/WP) Aim	n	Age groups	Status at assessment	Regulatory impact	Decision	
SA (SAWP/MSWG)	4					
Dose selection. Replace PK study	(1)	0-18y	Planned	High to moderate	PK requested	
Dose selection. Reduce PK study	(3)	5-11y/ 12-18y/ 12-18y	Planned/ Preliminary results/ Performed	High to moderate/ Moderate/ Moderate	PK requested/ Endorsed/ Endorsed	
PIPs (PDCO/MSWG)	12					
Dose selection. Replace PK study	(1)	0-18y	Planned	High	Described in the PIP	
Dose selection. Reduce PK study	(1)	0-18y	Planned	High	Key binding in the Opinion	
Dose selection.	(10)	0-18y	Range of Suggested - Considered – Planned - Performed	Range of Low - Moderate to low - Moderate to high	Described in the PIP or key binding in the Opinion	
MAA/indication (CHMP)	2					
Support the dose, inform covariables	(1)	0-18y, in particular 1-2y	Performed	Low	Variation accepted	
Support the dose	(1)	0-18y	Performed	High	Active procedure	


PBPK in paediatric dose selection

PBPK in paediatric dose selection

Aspects of regulatory evaluation


Purpose and impact of extrapolation in drug development and

regulatory review		Domain					
		Pharmacokin etics	Pharmacodynam ics	Disease (progression)	Patient population	Statistical and design aspects	
	Assumption *	 Exposure scalable by allometry Common metabolic pathways 	 Similar mechanism of action Clinical response correlated to biomarker effects 	 Similar etiology across different conditions Comparable rate of progression 	 Comparable baseline characteristics No differences standard of care 	 Nature of parameter distribution Variability and priors from another population 	
	Probability to violate (uncertainty in assumption)	Definitely / Likely / Unlikely / Improbable Minor / Major / Unknown Weight given to the assumptions underpinning the extrapolation or inferences					
	Clinical consequence(s) if assumptions are violated						
	"Skepticism scale"						
	Implications for evidence synthesis	 No additional evidence required More evidence required from small subset (bridging study) More evidence required from a large trial Agree on risk mitigation for acceptable risks, if further evidence gathering is unfeasible Restrict label, if risk is unacceptable 					
	Impact of Modeling and simulation on the development programme	 Reduce trial burden (e.g., sparse sampling) Assessment of metabolic maturation in children 	 Use of biomarkers as predictors of response Characterization of phenotypical differences due to ontogeny and maturation processes. Better dose rationale 	 Stratification by severity Different dosing recommendation Identification of prognostic markers 	 Estimation of covariate effects Define relevant inclusion criteria Identification of groups at risk (e.g., polymorphisms) 	Reduced sample size Eliminate the need for additional study	

CPT Pharmacometrics Syst Pharmacol. 2013 Feb 27; 2:e28. doi: 10.1038/psp.2013.6.

Aspects of regulatory evaluation

Biological plausability

Assumptions – justify and validate

System/drug variability – define and quantify

Uncertainty and risk — sensitivity analysis and worst case scenario assessments

Impact

Inform study

- low

Reduced clincal study

- moderate to high

Replace clinical study

- high

Inform risk handling

- moderate to high

Aspects of regulatory evaluation

In summary, requirements for paediatric PBPK would include

- the PBPK model developed and qualified/verified/refined in adults
- further qualification with model drugs needed if new data (enzymes/transporters etc) are included in the model
- systematically list and justify assumptions
- evaluate the impact of the major assumptions (sensitivity analysis, worst/best case scenarios)

Address impact of the M&S

- How are the data planned to be used?
 - Replace/reduce/optimize/inform
- If confirmation of the extrapolation needed
 - Study design/optimal sampling scheme/sample size
 - How to proceed if the observed data do not confirm the M&S?

EMAs regulatory activity on PBPK

<u>Guidelines</u>

Reporting of PBPK

Draft Concept paper on Qualification and Reporting of PBPK modelling and analyses

Extrapolation

Concept paper on extrapolation of efficacy and safety in medicine development

Interactions

Guideline on the Investigation of Drug Interactions

Renal impairment

Guideline on the evaluation of the pharmacokinetics of medicinal products in patients with decreased renal

Further advice

 Central scientific advice/protocol assistance or qualification advice/opinion by SAWP (involvement of PDCO and MSWG)

- Presubmission meeting with the Paediatric sector
- During the PIP review procedure

Challenges and potential solutions

Confirmation that the paediatric PBPK

models do predict paediatric PK data

What is needed to increase confidence?

- Update/publish models/results
 - what works?
 - what are the shortcomings?
 - differences in the metabolic pattern in small children versus adult?
 - differences in co-variate correlations between adults and peadiatric patients?
 - differences in/between paediatric age groups?
- System and drug data
 - Biology
 - Ontogony (metabolizing enzymes phase I+II, transporters (liver, GI, tissues))
 - Patophysiology of the various paediatric populations
 - Patient intrinsic/extrinsic factors
 - Methotological work

Acknowledgments

EMA Paediatric Committee

EMA Modelling and Simulation Working Group

Particularly thanks to

Ralf Herold

Efthymios Manolis

Anna Nordmark

Theresa Shepard

Siri Wang