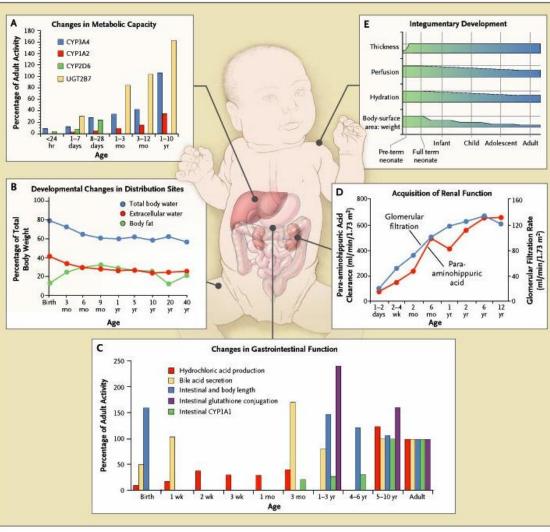
Managing Pediatric Poisons: How Important are Accurate Dose Recommendations?

Kevin Watt, MD

Conflicts of Interest

• None


Objectives

- Review barriers to pediatric drug studies
- Discuss the role of modeling and simulation
- Case studies
 - Neonatal sepsis
 - Fungal infection in children on ECMO

Physiologic Differences

Metabolism

Distribution

Body surface area

Renal Function

Absorption

Kearns N Engl J Med 2003.

Why are Pediatric PK studies Difficult?

- Limited number of patients with the disease
- No "healthy child/baby volunteer"
- Low rates of parental informed consent
- Perceived study risks
- Limited blood volume and timed sampling
- Sick population increases variability
- Lack of clinical pharmacology expertise
- Lack of pediatric PK/PD modeling expertise

Modeling and Simulation

Disease models

- Understand biomarker(s)/outcome relationship(s)
- Characterize disease processes in the absence of drug
- Drug models
 - Exposure-response relationships
 - Exposure-safety relationships
 - Predict differences in PK/PD relationships between healthy, special and diseased populations

Trial Models

- Account for trial dropout and medication adherence
- Explore the importance of patient characteristic

Case Study #1 **NEONATAL SEPSIS**

Neonatal Sepsis

- Infants with sepsis are 3x as likely to die as infants without sepsis
- Up to 20% of extremely premature infant deaths are caused by sepsis
- Survivors often suffer from significant morbidities
 - Bronchopulmonary dysplasia
 - Neurodevelopmental impairment

Empirical Antibiotics

- Majority of infants admitted to the NICU receive empirical antibiotics
- Use of prolonged courses (≥ 5 days) of empirical antibiotics in preterm infants associated with:
 - necrotizing enterocolitis, death, late-onset infection
- Proportion exposed to prolonged courses
 27-85% in NICHD Neonatal Research Network

Antibiotic Therapy

- Clinician has to weigh consequences
 - Short-term 24 hour mortality
 - Intermediate-term school age neurodevelopment
 - Long-term development of resistance and NICU public health

Phase I Trials: Pediatric Surprises

Drug	Preferred adult dosing (mg/kg/day)	Pediatric or infant dosing (mg/kg/day)	Factor Difference
Ampicillin	30–50	50	-
Clindamycin	10	5	0.5 x
Piperacillin	250–340	150–480	0.6-1.4x
Metronidazole	30	15	0.5 x
Fluconazole	3–6	12	2-4x
Micafungin	3	10–15	3-5x

Piperacillin-Tazobactam

• Piperacillin

- semisynthetic derivative of ampicillin with enhanced activity against resistant Gramnegative bacteria.
- FDA approved \geq 2 months
 - Appendicitis and peritonitis

Piperacillin-Tazobactam Study Design

- NIH sponsored study
- 4 center, 32 infant, open-label, PK, and safety study
- Inclusion Criteria
 - < 61 days of age</p>

AND ONE OF THE FOLLOWING

- Suspected systemic infection
- Receiving piperacillin-tazobactam as standard of care

Piperacillin Model Development

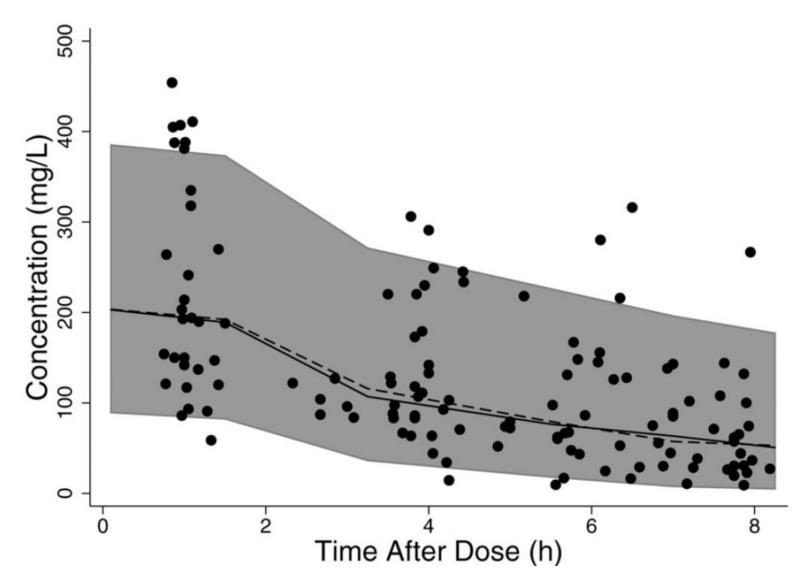
 Population PK analysis and Monte Carlo simulations were performed in NONMEM v. 7.2

Model development

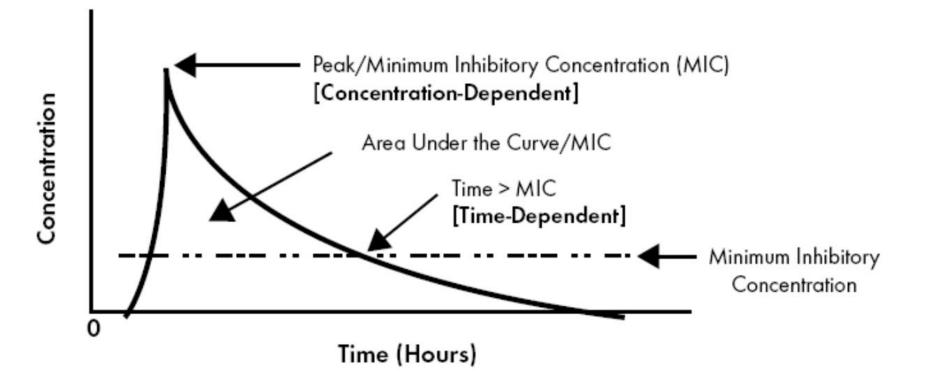
- One and two compartment models were tested
- Covariate analysis was performed using a forward inclusion (p=0.05) and backward elimination (p=0.001) approach
- Model development was guided by goodness of fit plots, plausibility of parameter estimates, VPCs, and parameter precision

V (L) = 0.4 * Wt CL (L/h) = 0.08 * Wt * (PMA / 32)^{1.8} * $exp(\eta_{C})$

Demographics


	N=32
Birth weight (kg) 1.43 (0.5, 3.	
Gestational age (weeks)	30 (23, 40)
Postnatal age (days)	8 (1, 60)
Postmenstrual age (weeks)	32 (25, 48)
Male (%)	63
Serum creatinine (mg/dL)	0.8 (0.3, 2.0)

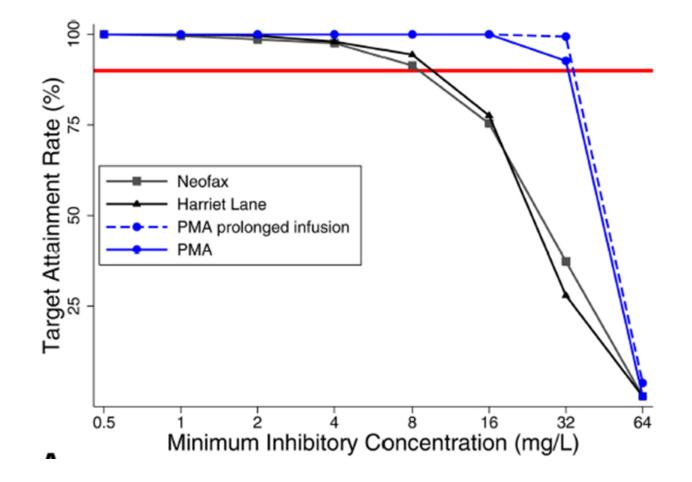
Values are median (range) for continuous variables and percent for categorical


Parameter Estimates

		% RSE	Bootstrap CI		
Parameter	Point estimate		2.5%	Median	97.5%
Fixed Effects					
V (L/kg)	0.4	9.6	0.4	0.4	0.5
CL (L/h/kg)	0.08	7.9	0.07	0.08	0.09
Exponent for PMA on CL	1.8	33.6	0.7	1.8	3.0
Random Effects					
CL interindividual var (CV%)	37.1	27.5	24.5	35.8	48.2
Residual error - prop (CV%)	32.7	9.9	23.1	31.4	37.8
Residual error - add (mg/L)	6.9	42.6	2.2	7.4	17.8

Visual Predictive Check

Surrogate PD Target



T>MIC for 75% of the dosing interval Pseudomonas aeruginosa MIC 16-32 mg/L

Dosing

PMA	Maintenance dose	Dosing interval
(weeks)	(mg/kg)	(hours)
<30	100	8
30-35	80	6
36-49	80	4

PMA-based Regimen Outperformed Standard Dosing

Cohen-Wolkowiez, PIDJ 2013

Conclusions

- Piperacillin-tazobactam clearance increases with increasing body weight and PMA
- Target concentrations were obtained with a PMA dosing strategy
- A prolonged infusion does not offer benefit over short infusion (0.5 hours) in preterm infants

Future Directions

Establish safety

- SCAMP study
 - Safety of Antimicrobials in Infants with Complicated Intra-Abdominal infections
 - N=350
 - Ampicillin, clindamycin, metronidazole, pip-tazo

Label changes

FUNGAL INFECTION IN CHILDREN ON ECMO

Case Study #2

Extracorporeal Membrane Oxygenation (ECMO)

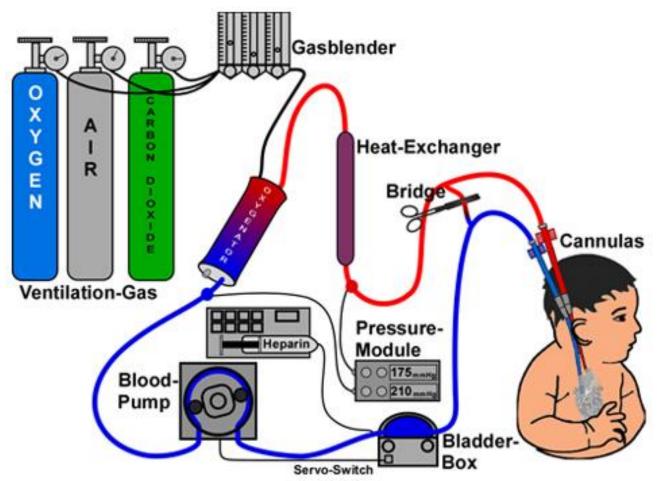
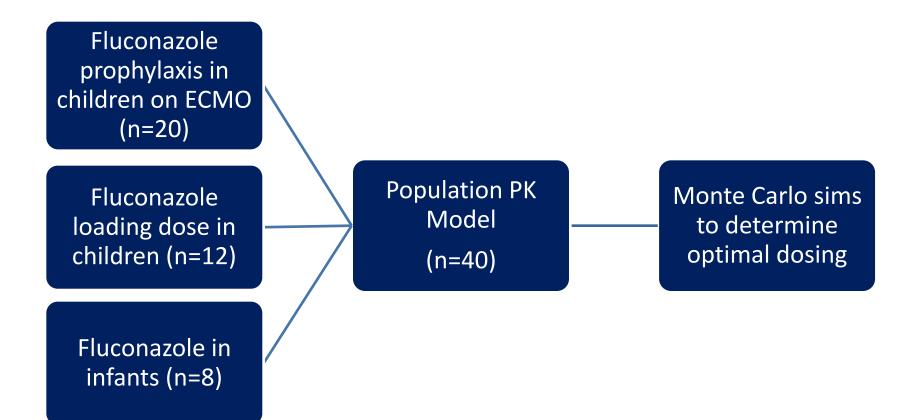


Illustration by Jürgen Schaub, Creative Commons BY-SA

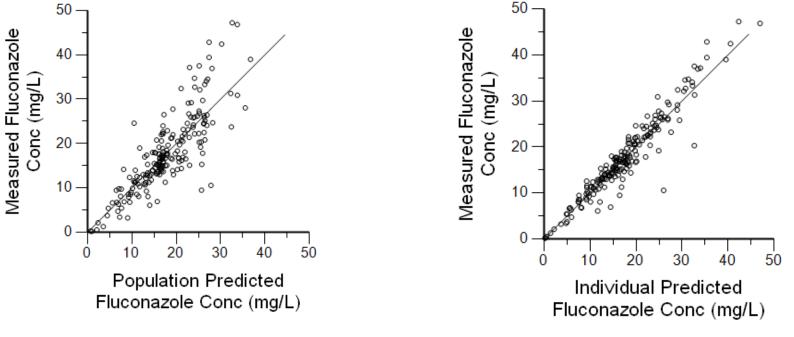
Infections on ECMO

- Children supported with ECMO are at high risk for infections
- *Candida* species are a common pathogen in this population


- Invasive candidiasis is treated with antifungal drugs and removal of intravascular catheters
- Treatment or prophylaxis on ECMO relies on optimal dosing

ECMO Can Alter the PK of Drugs

- ECMO increases the volume of distribution (V) of some drugs (e.g., vancomycin, fluconazole)
 - Addition of a large volume of blood to prime the circuit
 - Adsorption of drug by components of the ECMO circuit
- Renal insufficiency on ECMO can decrease clearance (CI)


Mulla Br J Clin Pharmacol 2005 Watt Pediatr Infect Dis J 2012

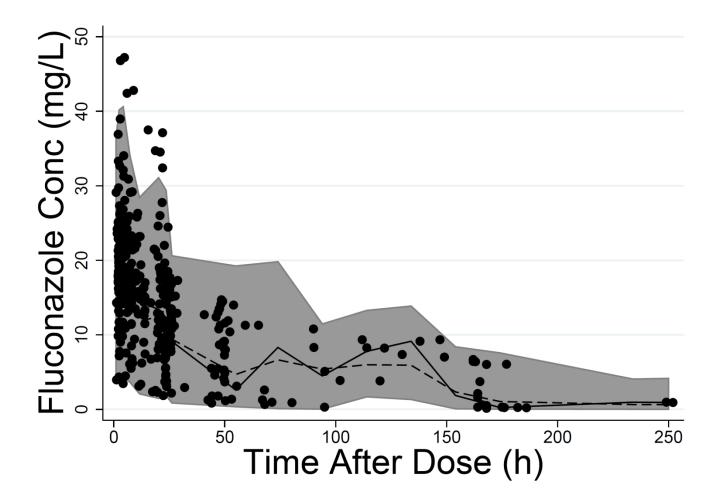
Population PK of Fluconazole in Children on ECMO

Population PK Final Model

CL (L/h) = 0.017 * Wt * (creatinine / 0.6)^{-0.44} * $exp(\eta_{Cl})$ V (L) = 0.9 * Wt * 1.4^{ECMO} * $exp(\eta_{V})$ ECMO=0/1

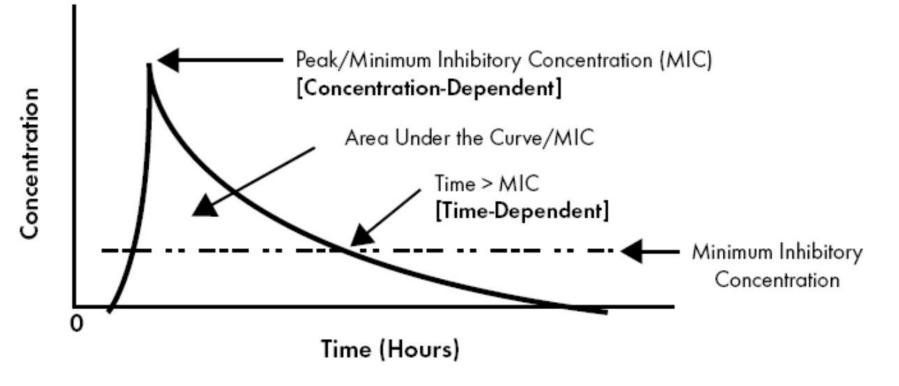
Watt Under journal review

Bayesian Estimates of PK


	ECMO	no ECMO
V (L/kg)	1.4	0.9
	(1.2, 1.6)	(0.8, 1.1)
CL (L/h/kg)	0.018	0.015
	(0.016, 0.020)	(0.011, 0.018)

Values are median (range)

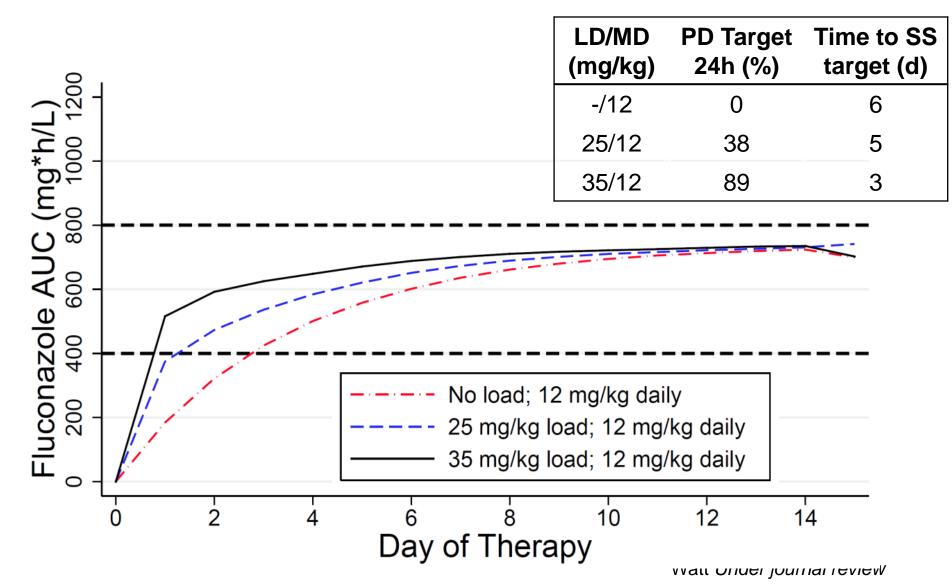
Parameter Estimates


			Bootstrap CI		
Parameter	Point estimate	% RSE	2.5%	Median	97.5%
Fixed Effects					
V (L/kg)	0.9	5.4	0.8	0.9	1.1
CL (L/h/kg)	0.017	5.7	0.016	0.017	0.019
Coefficient for ECMO on V	1.4	7.3	1.2	1.4	1.6
Exponent for SCR on CL	-0.33	9.1	-0.42	-0.33	-0.27
Random Effects					
V interindividual var CV%)	21.8	29.3	14.8	21.0	27.1
CL interindividual var (CV%)	33.0	22.0	24.1	32.1	39.7
Residual error (CV%)	15.8	12.8	13.7	15.8	17.7

Visual Predictive Check

Watt Under journal review

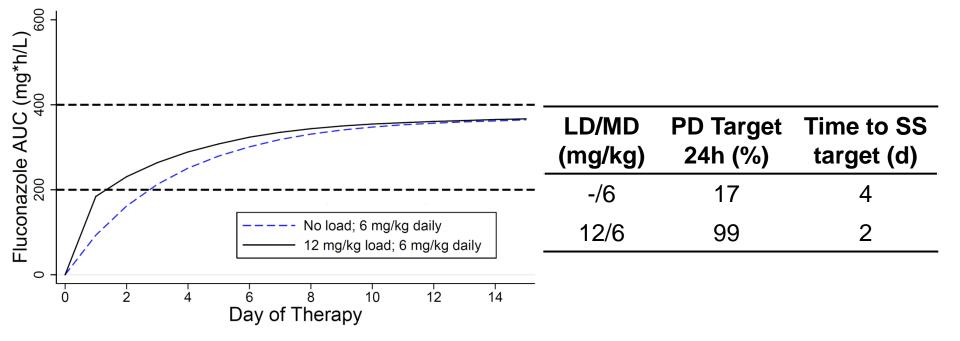
Surrogate PD target for treatment



AUC/MIC >50 (AUC>400 mg*h/L) in first 24h

Median AUC 600-800 mg*h/L at steady state

Watt Under journal review


Fluconazole Treatment: Simulated Exposures

Fluconazole Prophylaxis: Simulated Exposures

Median AUC 200-400 at steady state

T>MIC 4 mg/L for 50% of dosing interval

Next Steps

Use PBPK models to evaluate the impact of physiologic derangements on drug dosing in children on ECMO

- Determine relationship between drug physicochemical properties and interaction with ECMO circuit
- Develop PBPK models of fluconazole and micafungin in children on ECMO
- Evaluate PBPK models with clinical trials

Acknowledgements

Duke Clinical Research Institute Danny Benjamin Micky Cohen-Wolkowiez Brian Smith

FDA/M-CERSI Gil Burkhardt Dianne Murphy Ping Zhao OPT/OCP

UNC Eshelman School of Pharmacy Kim Brouwer Dhiren Thakker Julie Dumond Brouwer Lab

Funding NICHD (5K12HD047349-10) Thrasher Research Fund

PICU/PCICU Team Patients and their families