

Applications of NMR for assessing the higher order structure of protein therapeutics

David Keire Laboratory Chief (Acting) Branch 1 United States Food and Drug Administration CDER/OPQ/OTR/DPA 12/05/2016

This presentation reflects the views of the author and should not be construed to represent FDA's views or policies

NMR and the "state" of the protein

Aubin *et al.*, Chap 13 in Biophysical Characterization of Proteins in Developing Biopharmaceuticals, Berkowitz and Houde eds., Pages 341-383, 2015

HGH

- Self-associated at sub-millimolar concentrations
- Self-association increased with concentration, was reversible and exhibits fast exchange on the NMR timescale.
- Only weak, non-covalent interactions were observed with soluble dimer, trimer and tetramer aggregates present.
- No larger insoluble aggregates were observed.

Correlation time and relaxation

Reich, U.Wisc. Chem. 605

Things that give you fat lines

- Slow rotational tumbling
- Solution viscosity
- Chemical Exchange between states
 - Intra-molecular (e.g., cis-trans isomerism)
 - Inter-molecular (e.g., with bulk solvent and/or with aggregated forms)
- Paramagnetic ions
- Non-homogenous magnetic fields

<u>Two-Site Exchange:</u>

Rotation about a partial double bond in dimethylformamide

Equal Population of Exchange Sites

Chemical Exchange for Aggregates

- An "NMR invisible signal" (*e.g.*, a larger aggregated protein form) can impact the measurement of an NMR visible signal (monomer form).
- Probe by dark exchange saturation transfer (DEST) or paramagnetic relaxation experiments (PRE).

Work coming from the Clore group at NIH e.g., Anthis and Clore, Q. Rev. Biophys., 48(1), 35-116, 2015 Review for beta-amyloid studies Karamanos *et al.*, Prog NMR Spectr., Vol 88-89, 86-104, 2015

Protein Timescales

Rituximab vs Infliximab

1D Proton NMR at 600 MHz

Reproducibility

PCA

Insulin Structure and Equilibrium

Spectra peak position: sequence, 2° and 3° structure.

Peak line-width and intensity: 4° structure, concentration, equilibrium and kinetics.

Rapid Insulins in US market

Drug Name	Pharma. Company	API Conc. (0.6 mM)	M.W. (Da)	Organic Excipients	Conc. (mM)
Novolin R	Novo Nordisk	Insulin Regular	5808	glycerol metacresol	173.7 27.74
Humulin <mark> R</mark>	Lilly	Insulin Regular	5808	glycerin metacresol	173.7 23.12
Apidra	Sanofi- Aventis	Glulisine B3: Asn->Lys B29: Lys->Glu	5823	Metacresol tromethamine polysorbate-20	29.13 49.52 8.15
Novolog	Novo Nordisk	Aspart B28: Pro->Asp	5826	glycerol Phenol metacresol	173.7 15.94 15.91
Humalog	Lilly	Lispro B28: Pro->Lys; B29: Lys->Pro.	5808	glycerin metacresol	173.7 29.13 15

1D ¹H spectra on insulin drug product

2D DOSY Spectra

Novolin R (Red) Humulin R (Blue)

Diffusion coefficient for insulin

3 lots for each product, dashed line are computer simulation results of diffusion coefficients

FDA

Summary

- 2D DOSY separates API signal from excipient and provides data for protein quaternary and quinary structure data.
- The observed insulin NMR signal represents exchange average between dimer and hexamer. Monomer does not exist in formulation.
- The DOSY method was highly reproducible and demonstrated 0.13% variation in repeated measurements *D*₀ for Novolin R products.

2D ¹H-¹³C HSQC on insulin drug product

NovolinR[®] HumulinR[®]

22

FD)

Conclusion

• 1D NMR can inform upon the state of a protein in solution including self-association and aggregation.

Excipients can sometimes interfere
Calibration is needed for quantification.

- 2D NMR spectra, both HSQC and DOSY, can be applied to drug formulations directly.
- PCA is a valuable tool to identify differences between the complex spectra of comparators.

Acknowledgements:

Kang Chen Sharadrao Patil Houman Ghasriani Diana Long Michael Karfunkle

FDA U.S. FOOD & DRUG

