

CRITICAL EVALUATION OF THE EMERGING ANALYTICAL METHODS FOR CHARACTERIZATION OF SUB-VISIBLE PARTICLES

The Known Unknowns in Subvisible Particle Characterization

Atanas Koulov Lonza Drug Product Services MCERSI Workshop | Baltimore | 05.12.2016

LONZC

Forward-Looking Statements

Certain matters discussed in this presentation may constitute forward-looking statements. These statements are based on current expectations and estimates of Lonza Group Ltd, although Lonza Group Ltd can give no assurance that these expectations and estimates will be achieved. Investors are cautioned that all forward-looking statements involve risks and uncertainty and are qualified in their entirety. The actual results may differ materially in the future from the forward-looking statements included in this presentation due to various factors. Furthermore, except as otherwise required by law, Lonza Group Ltd disclaims any intention or obligation to update the statements contained in this presentation.

Subvisible Particles – Why Measure?

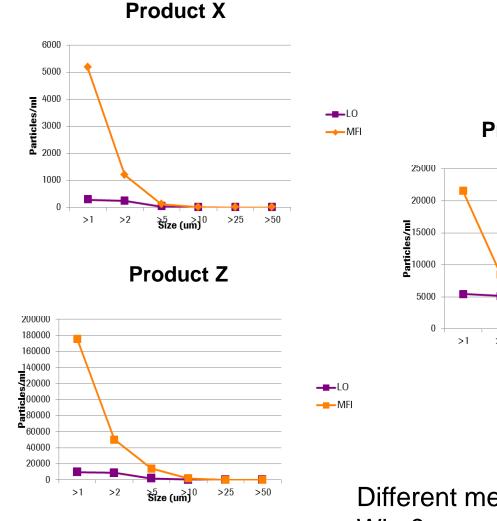
- Subvisible particles are likely to be present in parenteral drug products
- Biological consequences?
- Historically, SvP >10µm and >25µm have been monitored in parenterals (USP<788>)
- Most recently, regulatory expectations for particle characterization are being extended to particles <10µm and even <1µm
- A number of new technologies have emerged over the last decade, but their performance is not well understood

Subvisible Particles – Why Measure?

U.S. Food and Drug Administration Protecting and Promoting Public Health

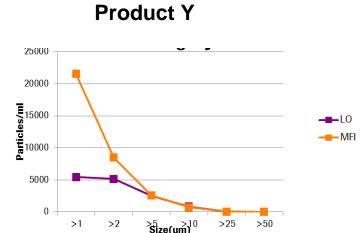
www.fda.gov

Regulatory Expectations Sub-Visible Particles Between 2 – 10 Micron


- Forced degradation, stressed and accelerated temperature and shipping stability samples should be included in the studies
- Orthogonal methods should be used to establish the validity of the primary method
 - If the two methods give different results further studies are needed to understand why and determine an appropriate control strategy

S. Kirshner, USFDA Breckenridge CO, 2014 Workshop on Aggregation and Immunogenicity

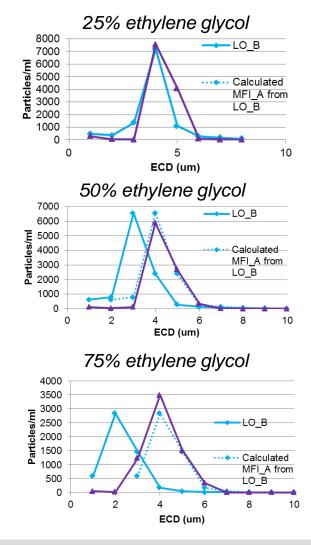
Subvisible Particle Methods – How to Measure?


- Which methods are "orthogonal"?
- Are we confident in method performance?
- How do we setup (product-specific) limits for SvP?

Subvisible Particles – How to Measure?

Koulov et al., IABS 2nd particle workshop Nov 2015

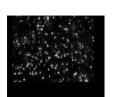
Different methods – different results. Why?


Subvisible Particles – How to Measure?

5µm silica particles in sucrose solutions

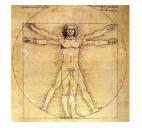
0% 5μm	
20% 5μm	
40% 5μm	
60% 1-2μm	$ \begin{array}{c} \begin{array}{c} (1) \\ (1) \\ (1) \\ (2) \\$
80% 1-2.5μm	

These methods are not truly orthogonal!


Koulov et al., IABS 2nd particle workshop Nov 2015

Subvisible Particles – Size Distribution?

Ab monomer (~5nm)


Nanoparticles (~50nm)

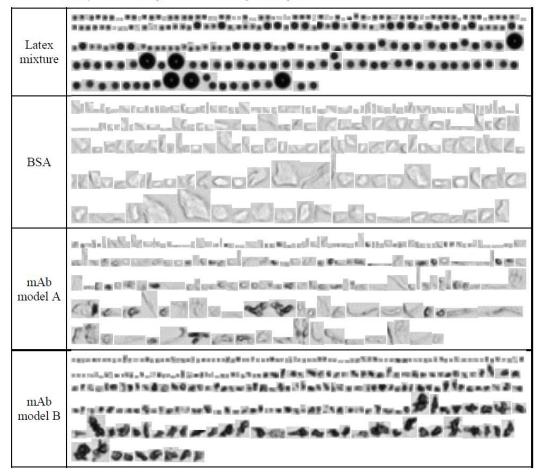
Sub-visible (microscopic) particles (~1µm)

Visible particles (~300µm)

A human

A blue whale

Mount Pilatus (Tomlishorn)



Oberon (moon of Uranus)

Wait, this doesn't sound so simple!

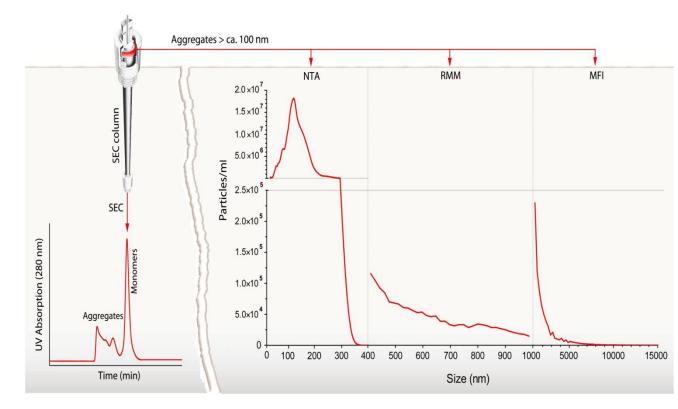
Subvisible Particles: Same, but Different

Table 1 Randomly selected and representative MFI images of the particle models used

Rios et al., 2006, J Pharm Sci (in press)

Analytical Toolbox – Different Tools for Different Jobs

		Nano track analysis	Resonant mass	Coulter counter	Flow imaging microscopy	Light obscuration		
		NTA	Archimedes	CC	MFI FC	HIAC		
		Tracking of Brownian mo- tion of individual particles	Changes in frequency due to added mass	Changes in resistance due to volume displacement	Weighing of single particles passing through a flow cell	Drop in current due to the amount of light blocked		
Prin	nciple	Microscope Suspended particles Laser beam Chamber	Channel Micro resonator	Current applied $+$ \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet	Camera Flow cell Pump and waste	Particles Lens Shadow Flow		
Raw	v data	Video**, #/mL/size	#/mL/size, particle buoyancy	#/mL/size	#/mL/size, images**, particle morphology	#/mL/size		
Optimal size rage [um]*	0.03 0.05 0.20 0.30 0.60 0.50 0.80 1.00 2.00 5.00 18.0 25.0							
Optimal sam- ple concen- tration [particles/mL]*		3x10 ⁸ - 1x10 ⁹ , 20-70 centers per frame < 8x10 ⁶		~ 2x10 ⁵ , coincidence < 5%	MFI: < 9x10 ⁴ FC: < 1.5x10 ⁶	< 1x10 ⁴		


* As for the supplier. In all the cases, the optimal sample concentration is much more higher than the typically found in non stressed high concentrated protein samples or in stressed samples at relevant conditions ** Further analysis needed to get #/mL/size 🛛 Informative data

Rios et al., 2016, Pharm Res, 33: 450-

Some of these methods are truly orthogonal!

Subvisible and Submicron Particle Measurement Methods: Same, but Different!

Filipe et al., 2013, TrAC, 49: 118-

Subvisible Particle Measurement Methods – Do We Understand their Analytical Performance?

"The ability of discerning high quality unavoidably implies the ability of identifying shortcomings."

Edsger Dijkstra

Precision of SvP Characterization Methods

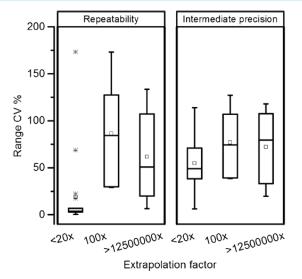
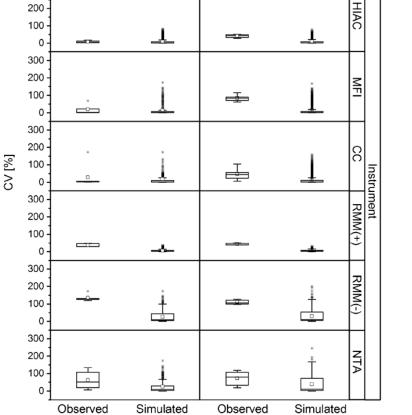



Fig. I Precision of subvisible particle methods in relation to the applied extrapolation factors. Syringes containing protein formulation stored for 2 months at 2-8°C were used for precision assessment. Results, reported as CV% were plotted against the corresponding extrapolation factors. Factors used were <20x for HIAC, MFI and CC. 100x for RMM. 12500000x for NTA.

Table V Sample volume and applied extrapolation factors to report final particle concentration normalized to 1 mL of the different instruments are summarized

Instrument	Measurement volume, V (mL)	Extrapolation factor, $I N (mL^{-1})$
HIAC	>	1.0x
MFI	0.6	1.6x
CC	0.05	20x
RMM	0.01	100x
NTA	0.0000008	I 2500000x

Precision

Intermediate precision

Repeatability

300

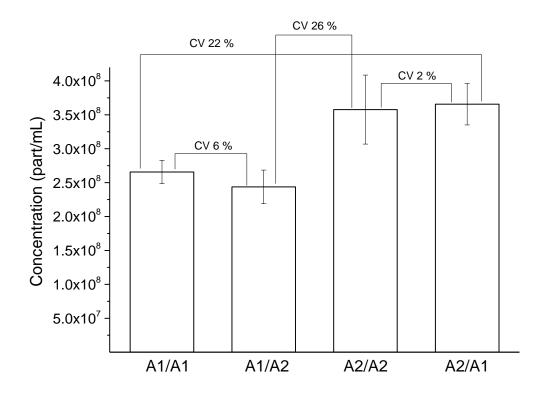
200

Fig. 2 Comparison of the experimentally measured and simulated (using Poisson distribution) CV% values per instrument and type of precision analysis. For additional details, please refer to Materials and Methods.

Type

Rios et al., 2016, Pharm Res, 33: 450-

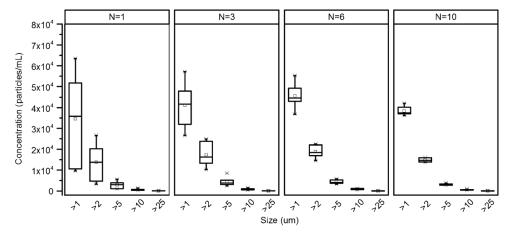
Example: Nanoparticle Tracking Analysis


Video recording and video analysis parameters of the measurement of a protein sample identically

Video	Analyst 1 (A1)						Analyst 2 (A2)								
recording	cording Video 1		Video 2			Video 3		Video 1		V	Video 2		Video 3		
Shutter	utter 1265		1265			1265		299			299		299		
Gain	า 253		283			268		299			377		377		
Video analysis	A1	A2	A1	A2		A1	A2	A1	A2	A1	A2		A1	A2	
Blur	7	7	7	7		7	7	7	9	7	9		7	9	
Detection Threshold	7	9	8	11		8	10	14	12	14	13		14	11	
Min Track Length	10	10	10	10		10	10	10	10	10	10		10	10	
Min Expected Size	50	100	50	100		50	100	100	50	100	50		100	100	
Results Mean		Stdesv	Stdesv		Mean			Stdesv							
Concentrati															
on		2.66E+08		1.72E+07		3.58E+08				5.09E+07					
Size		139		30		141				28					

prepared and independently measured by two different analysts in different days.

Koulov et al., Biotherapeutic Analytical Summit 2015


Example: Nanoparticle Tracking Analysis

Intermediate precision – video recording setup has much higher impact then post-processing

Koulov et al., Biotherapeutic Analytical Summit 2015

What do We Need to Pay Close Attention To?

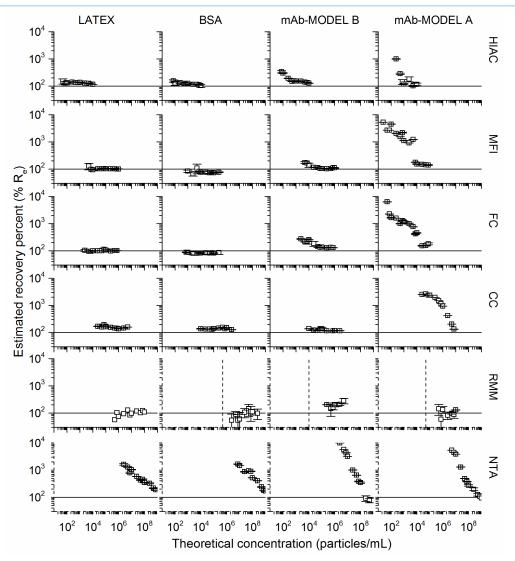
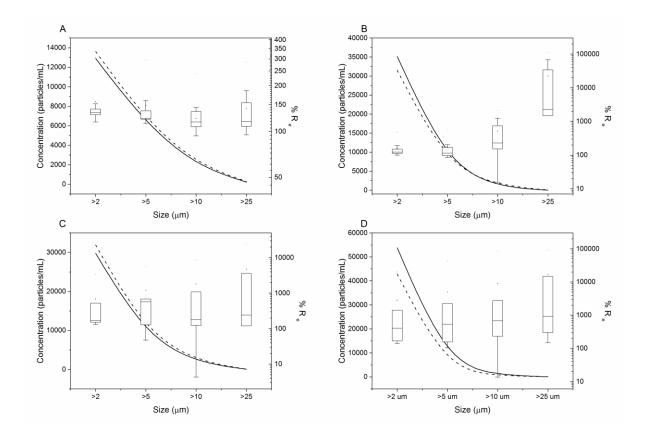
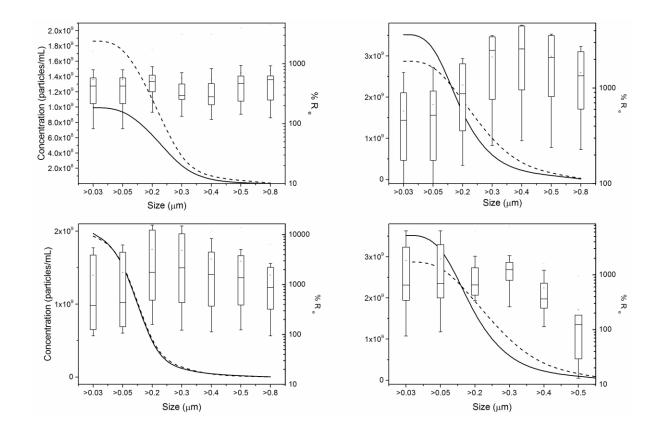

Rios et al., 2016, 33: 450-

Fig. 3 Protein particle concentration variability as a function of pool size. Comparison of the variability of 6 independently prepared samples of commercial proteins. The content of a number N of prefiled svringes was pooled and analyzed by MFI.

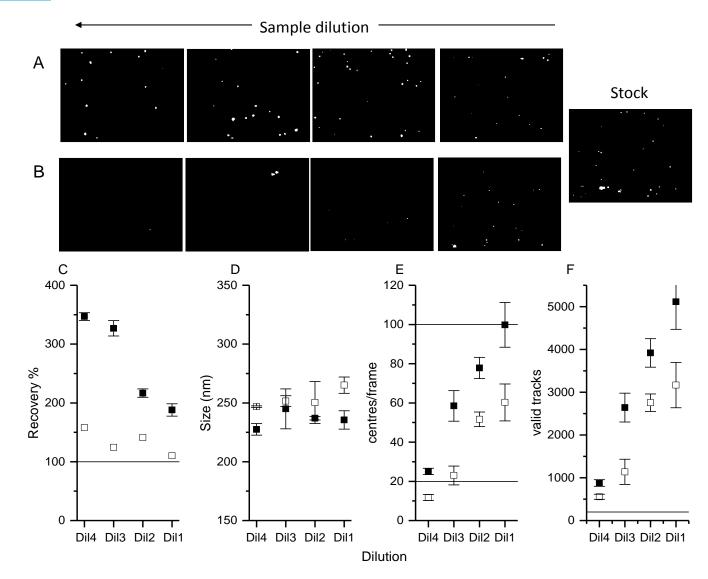
Inherent method variability of SvP methods:


- Large extrapolation factors in sub-µm methods
- Sample prep (e.g. pooling)
- Method-specific factors
- Evaluation of method performance is essential and may require <u>major efforts</u>, <u>significant resources</u> and <u>expert</u> <u>knowledge</u>

Accuracy of SvP Characterization Methods

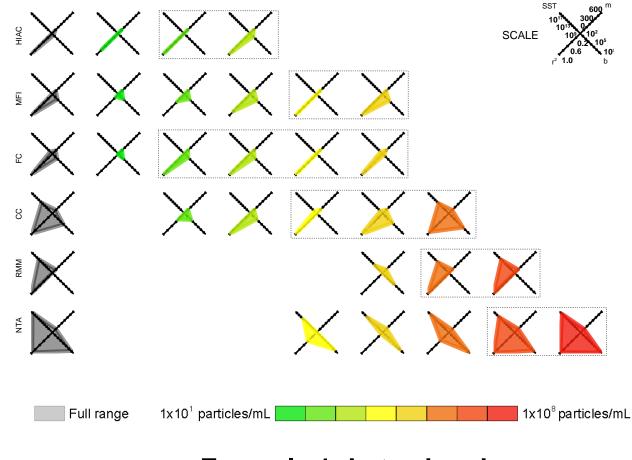

Rios et al., 2016, J Pharm Sci , 105(7):2042-52

Accuracy of SvP Characterization Methods

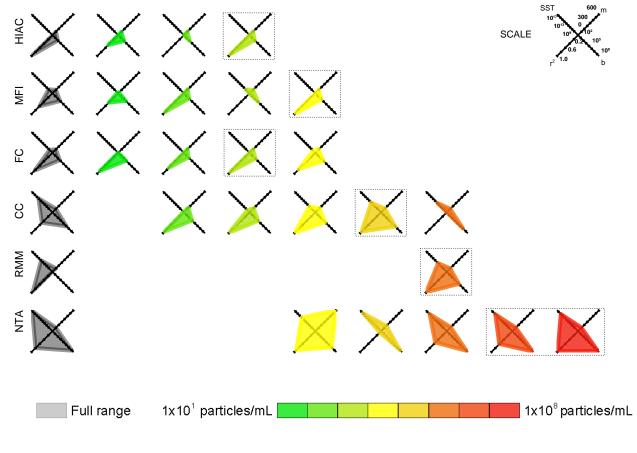


Example 1: Light Obscuration

Accuracy of SvP Characterization Methods

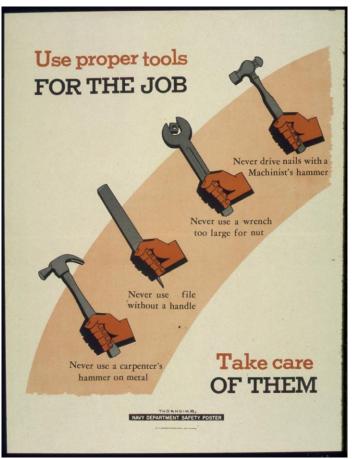

Example 2: Nanoparticle Tracking analysis

Nanotracking analysis: Influence of the operator – video recording settings


Koulov et al., Biotherapeutic Analytical Summit 2015

Linearity of SvP Characterization Methods

Example 1: Latex beads


Linearity of SvP Characterization Methods

Example 1: mAb model A

What Do We Do?

- How do we "cover" the entire SvP range?
 - Easy, just measure everything
- Evaluation of method performance is essential and requires <u>major efforts</u>, <u>significant resources</u> and <u>expert knowledge</u>
- Different tools for different jobs:
 - Product Quality (SvP measurements for submission dossiers)
 - Product characterization
 (e.g formulation or device development)

Acknowledgements

 Lonza Drug Product Services Roman Mathaes
 Satish Singh
 Susanne Jörg
 Hanns-Christian Mahler

<u>Roche Biologics</u>
 Anacelia Rios
 Nadine Ris
 Fabian Stump
 Christof Finkler

Thank you

Drug Product Services

URL www.lonza.com/DrugProduct | Email DrugProduct@lonza.com

