Size Exclusion Chromatography of Biopharmaceticals: Truth or Fiction

> Christina Vessely Senior Consultant, Biologics Consulting

PHARMACEUTICALS, DEVICES & BIOLOGICS ADVISORS

Aggregates have been of concern to regulatory agencies for a number of years

- Linked to adverse events in patients
 - Injection site reactions
 - Anaphylaxis
 - Immunogenicity
- Consequences
 - Discomfort
 - Permanent Damage
 - Death

Size Exclusion Chromatography has long been considered a workhorse of the industry for the detection and quantitation of aggregates

- Included on the vast majority of analytical release testing panels for biotherapeutic products
 - Therapeutic Proteins
 - Antibodies
 - Peptides

Quantitative evaluation of species based on molecular weight

- Monomers
- Dimers
- High molecular weight species (HMW)

Relatively High Throughput

Run times on the order of 20 – 40 minutes/sample

Not labor intensive

- Dilute and shoot
 - Initial prep of samples
 - Occasional monitoring of run
 - Data analysis
 - Integration parameters can be pre-programmed
 - Clean up

Validatability

- A well developed method will demonstrate
 - Relative Accuracy/Linearity
 - Precision (repeatability and intermediate precision)
 - Specificity

So why is everyone at this meeting talking about orthogonal methods?

At Best, SEC-HPLC tells only part of the story with respect to aggregates and immunogenic potential of a product

Deep down, none of us really trust the data we get from our SEC-HPLC assays.

Very large aggregates / Particles

- Larger aggregates may never enter the HPLC column
 - Filtered by the inlet frit of the column

Confirmation of molecular weight of each species

- QC laboratories often use a single detector
- Molecular weight assignments are made based on
 - Proximity to the monomer peak
 - Assume the species to the left of the main peak is a monomer
 - Comparison to molecular weight standards
 - Assumes all species are similar in conformation
 - Natively unstructured protein
 - Globular protein

SEC Case Study – Pegylated Protein

Comparison of two different samples

SEC Case Study – Pegylated Protein

Comparison of two different samples

- Column
- Mobile Phase
- Sample
- Instrument
- Environment

- Column
 - Porous solid particles
 - Separation is achieved by the amount of interaction / exclusion a particular species has with the pores
 - Larger species will more likely be excluded from pores
 - Potential for surface interactions that may increase the tendency to aggregate during elution
 - Column temperature can impact elution profiles
 - Assay is often run at "ambient" conditions
 - Ambient temperature can change depending on season, location in laboratory, time of day
 - Columns degrade over time
 - May lose the ability to see certain aggregate species
 - Resolution may decrease, making accurate quantitation more difficult
- Mobile Phase
- Sample
- Environment
- Aggregate characteristics

© BIOLOGICS CONSULTING

- Column
- Mobile Phase
 - Aqueous buffer, salt to reduce non-specific interactions
 - Colloidal Stability
 - pH
 - Aggregation is usually more prevalent close to isoelectric point of protein
 - Less charge-charge repulsion
 - Salts
 - Increases in salt concentration can also decrease chargecharge repulsion
 - Other additives
 - Organic modifier
 - Can increase or decrease prevalence of aggregates
- Sample
- Environment
- Aggregate Characteristics

- Column
- Mobile Phase
- Sample
 - Is the sample in the HPLC vial the same as in the drug substance or drug product container?
 - Dilution prior to injection
 - Concentration dependence of reversible aggregates
 - What is your diluent?
- Environment
- Aggregate Characteristics

- Column
- Mobile Phase
- Sample
- Environment
 - Temperature can influence elution profiles in SEC-HPLC
 - Many SEC-HPLC methods are run at "ambient" conditions
 - Ambient temperature can change depending on
 - Season
 - Location in the lab
 - Time of day
- Aggregate Characteristics

- Column
- Mobile Phase
- Sample
- Environment
- Aggregate Characteristics
 - All aggregates are NOT created equal
 - Aggregates tend to be stickier than monomers
 - Potential that larger aggregates will be permanently adsorbed to the solid phase of the column
 - Results in an underestimation of percent impurity of a sample

Choose a column that is appropriate for your product

- Size range for column should match expected ranges for monomers, dimers, and higher order molecular species
- Evaluate multiple columns to determine the ability to resolve aggregate species in your product

Confirm recovery of your protein from the column

- Different methods to accomplish this
 - Calculation based on area under the curve, absorbance, extinction coefficient
 - If there are no interfering species in the mobile phase, may be simpler to inject the protein in the presence and absence of column
 - Compare total peak area

Mobile phase compatibility

- Data from formulation development studies can be leveraged to improve your SEC method
 - Impact of salt on aggregates
- What is the mobile phase pH vs. isoelectric point?
- What is the mobile phase pH vs. the formulation pH?

Performed forced aggregation studies

- Generate a "stable" aggregate
 - Agitation, with or without thermal stress
 - If you have surfactant in your formulation, you may have difficulty generating aggregate
 - Freeze/thaw cycling
- Prepare samples of different aggregation concentration (based on measured concentration in stock)
- Analyze in your SEC method
- Confirm that you have linearity across a concentration range

Build consistency into your method

- Perform method robustness studies early to evaluate
 - Impact of slight but deliberate changes to mobile phase composition
 - Salt concentration
 - ∎ pH
- Condition new columns before use
 - Most columns will have some level of non-specific interaction
 - Block non-specific binding
- Evaluate column life and understand the signs of column degradation
- Don't count on ambient temperature to be consistent
 - Set column temp at 30C
- Set smart system suitability criteria
 - Indicative of issues with column, instrument, or laboratory error
 - Should not be so restrictive that you are failing a "good" assay
- Utilize reference standards
 - System suitability criteria should include an evaluation of reference standards
 - Do they match typical profiles
 - Are there any unexpected peaks or out of trend results?

Use Orthogonal methods

- Do the results of your SEC-HPLC agree with other results?
 - Relevant orthogonal methods from your release panel
 - Appearance
 - SDS-PAGE
 - Denatures and dissociate non-covalent aggregates
 - Addition of reducing agent to dissociate covalent aggregates
 - If you are seeing aggregates by SDS-PAGE and not by SEC-HPLC, you need to investigate
 - Particle methods
 - Again, particles may be filtered at the column inlet and therefore would not be detected by SEC-HPLC
- Don't wait until late stage to apply extended characterization methods!!!!
 - SEC-MALLS
 - Use three detectors; UV, Refractive Index, and Multiangle light scattering
 - Allows for specific determination of molecular weight of aggregate species
 - Increased signal in MALLS detector for higher order aggregates

Cross verification studies (Analytical Ultracentrifugation)

- Forced aggregate study
- Various concentrations of aggregate/monomer across range
 - Ideally range could cover at least 0.5 15% aggregate
- Prepare samples and analyze in parallel
 - Samples should be run on the SEC method the same day as on AUC
 - Prevents the observations of different aggregate levels between the two techniques resulting from different ages of samples
 - Samples should be run in the same laboratory if possible
 - Samples may be subject to agitation induced aggregation with shipment to a contract laboratory
- Do not be surprised if the methods don't match!!!
 - It is likely to see higher levels of aggregate by AUC than by SEC
 - More critical to understand the relationship between the two methods
 - Evaluate slopes and trends with respect to aggregate levels and types

Define bad

- Poor separation?
- Not seeing aggregates that are observed in other assays?
- No correlation between SEC and other orthogonal methods?

Further optimization

- Are there other column types/chemistries to evaluate?
- Changes to mobile phase
- Addition of other additives

Admit defeat

• What other methods can I consider?

Asymmetrical flow field flow fractionation (AF4)

- Asymmetrical flow field flow fractionation (AF4)
 - Separation is achieved in the absence of a column
 - Uses flow in two directions (parallel to channel and perpendicular to channel) to achieve separation
 - First step is focusing
 - Increased concentration of protein into a small band can promote aggregate formation for some products

AUC?????

- May be necessary in some cases
 - Low throughput
 - Higher limit of quantitation
 - Typically require >1% aggregate before it can be reliably detected
 - Formulation excipients can increase the quantitation limit
 - Example, sucrose alters viscosity of formulation and therefore impacts rate of sedimentation
 - Limit of quantitation is closer to 3% for formulations with high levels of sugars

A good SEC-HPLC method is a critical part of the analytical toolbox for biotherapeutics

- Invest in method development at early stages of the program
- Critically evaluate the quality of the data

SEC-HPLC should be used in conjunction with orthogonal techniques

- Complementary techniques to give a more complete picture of aggregate profiles of a solution
- Apply critical evaluation of results to ensure the assays are telling a consistent story
 - If your data from orthogonal techniques are not in agreement, you need to investigate
 - Issue with one method or the other?
 - Cross-verification to understand / establish relationship between results

Questions???

PHARMACEUTICALS, DEVICES & BIOLOGICS ADVISORS