MCERSI Co-Processed API and Regulatory Requirements Workshop

Strategic Considerations in Co-Processing Scale-up

San Kiang

Drug Product Development, J-Star/Porton, Cranbury, NJ

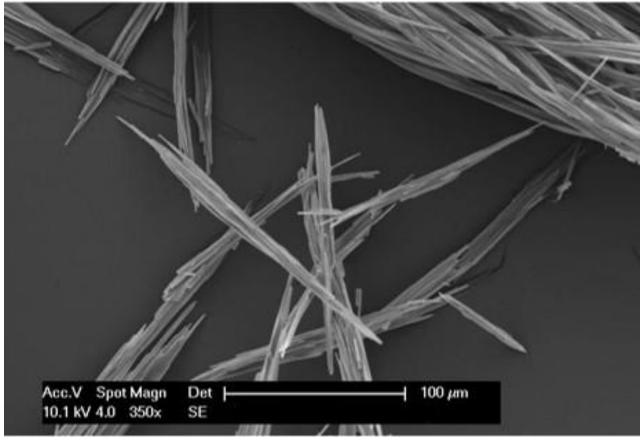
Email: san.kiang@jstar-research.com 07/13/22

Outline

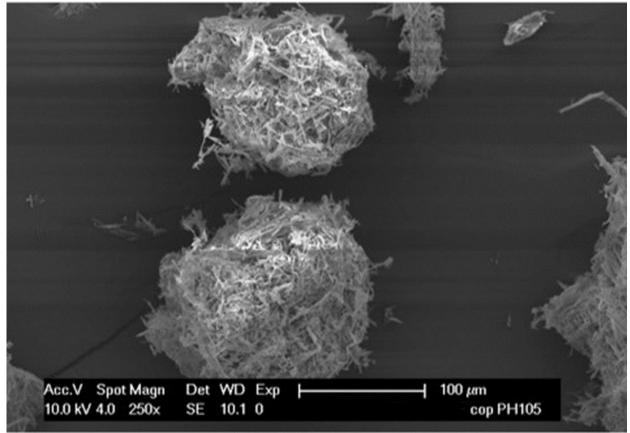
- Background
- Manufacturing considerations
- Methods
- Facility
- Solvent safety
- Quality & Testing considerations
- Regulatory considerations

Background

My Co – processing journey started at BMS


Particle engineering using excipient(s)

- Before
- During, or
- After Crystallization



20 years ago

API as a solvate

Co-processed API with MCC, SiO₂

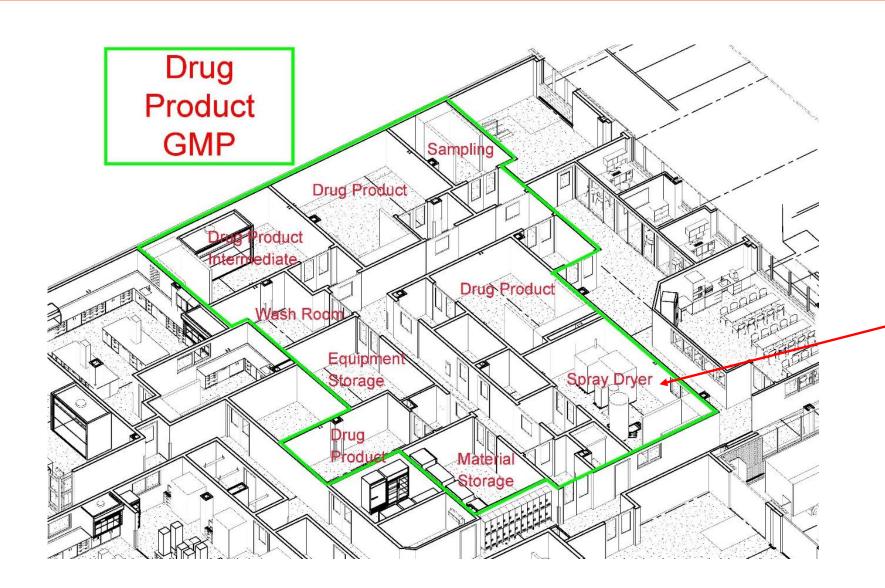
Manufacturing considerations

Coprocessing approach considerations

Process	Description	Process equipment	Analytical
	by anti-solvent addition	 Crystallizers 	 Flowability – Flodex, FT4
	with polymers – agglomeration		Rheometer, Erweka GT
API precipitation	due to polymer swelling	 Filter dryers 	
	API precipitation in polymer		 PSD – Mastersizer
	matrix – Filtration - Drying	 Microfluidizers 	
	High pressure homogenization of		Morphology – SEM
	D/E emulsion in aqueous media	Wet mill	
Heterogenous	Crystallization on excipient		BD – Copley density tester
nucleation	surface	Jet mill	
Inert carriers	API adsorption in mesoporous		HPLC – API quantification
	carriers	• Cone/Co-mill	
Dry powder coating	API coated with submicron		Powder segregation – Jenike
(non-solvent)	excipients by high energy devices		fluidization segregation tester, Raman Microscope
			 PAT – Raman (solvent), FBRM (size), Blaze (image)

Manufacturing considerations

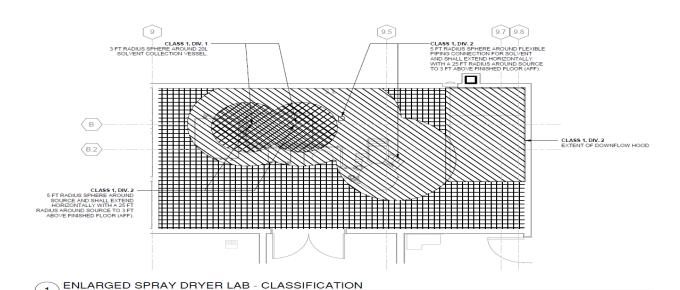
Facility considerations


	DS Mfg. site	DP Mfg. site
Solvent based co-processing mostly	✓	A few
done	Need DP license?	
Solvent handling capabilities	✓	Can use engineering
 Safety measures 		controls. Continuous
• Controls		Processing (CP) can be
 Process Equipment 		good solution
Testing equipment		
Economical	✓	Can be with CP
CDMOs capable of coprocessing	^	Very Limited
Non solvent based co processing		
Dry coating, adsorption	✓	√ J*S'

Manufacturing considerations

Solvent safety in a non-explosion proof area

2 Clarke Dr DP GMP/GLP Labs

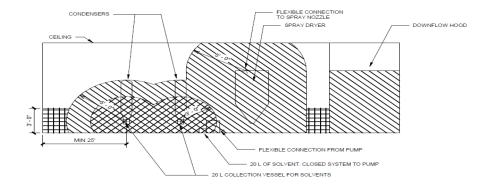


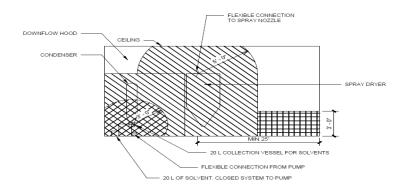
GEA Niro Spray Dryer MOBILE MINOR- CC

Electrical Hazardous Location Classification Plan - E501

CLASSIFICATION LEGEND:

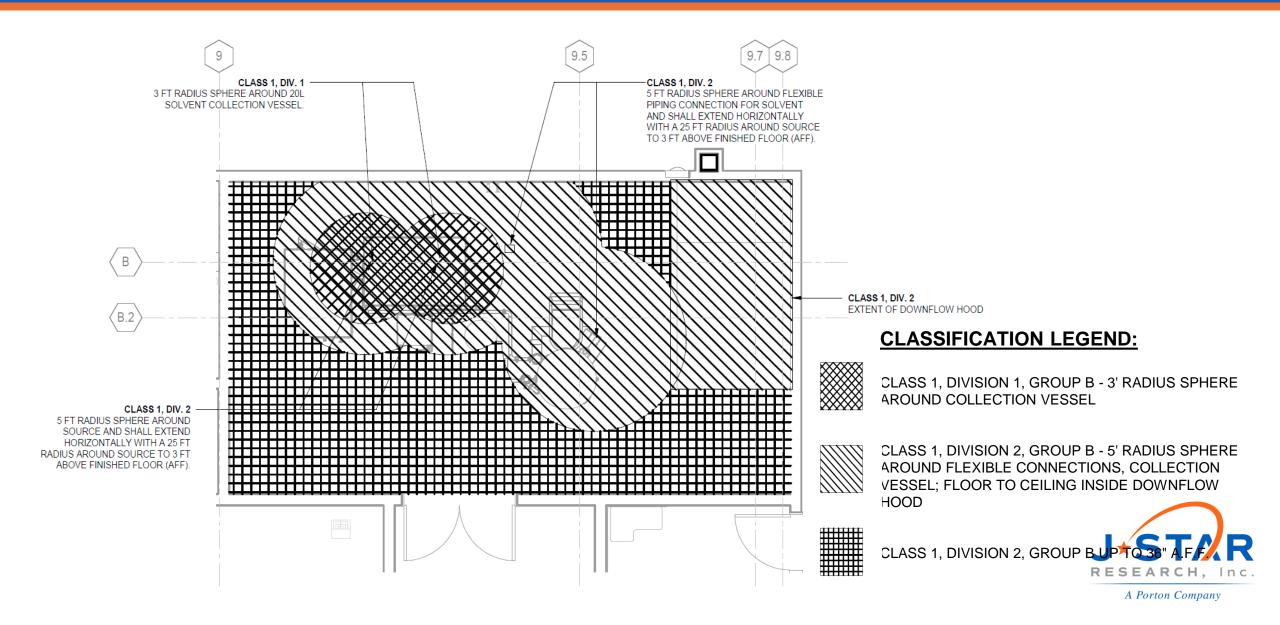
CLASS 1, DIVISION 1, GROUP B - 3' RADIUS SPHERE AROUND COLLECTION VESSEL


CLASS 1, DIVISION 2, GROUP B - 5' RADIUS SPHERE AROUND FLEXIBLE CONNECTIONS,


CLASS 1, DIVISION 2, GROUP B UP TO 36" A.F.F.

GENERAL NOTES:

- 1. REFER TO SHEETS E-101, E-201, E-301, AND E503 FOR POWER, LIGHTING, AND TELE/DATA DEVICES.
- ALL CONNECTIONS AND PENETRATIONS INTO THE SPRAY DRYER ROOM SHALL CONFORM TO THE REQUIREMENTS OF NEC ARTICLE 500 APPLICABLE SECTIONS



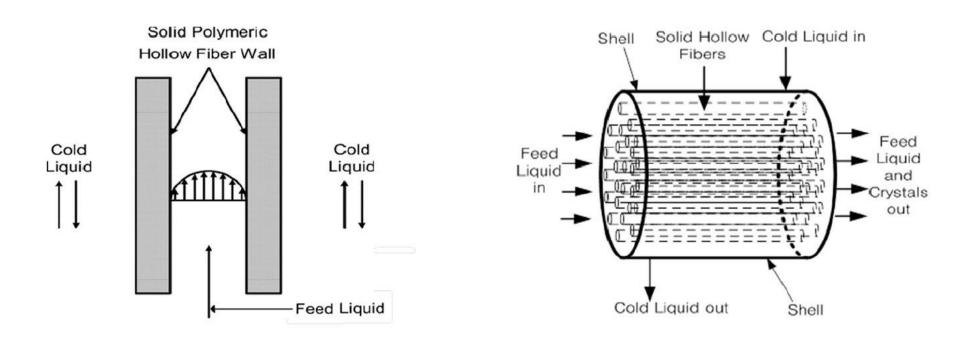
2 SPRAY DRYER LAB ELEVATION - NORTH VIEW - CLASSIFICATION SCALE N.T.S

SPRAY DRYER LAB ELEVATION - EAST VIEW - CLASSIFICATION

Spray Dryer Lab - Plan View - Classification

Hazardous Areas Classification - NA

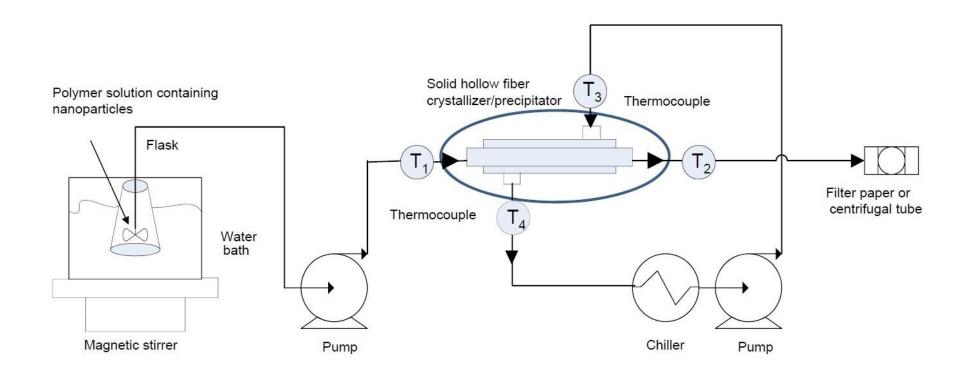
Class	Nature of Hazardous Material
Class I	Hazardous because flammable gases or vapors are present (or may be present) in quantities sufficient to produce explosive or ignitable mixtures.
Class II	Hazardous because combustible or conductive dusts are present (or may be present) in quantities sufficient to produce explosive or ignitable mixtures.
Class III	Hazardous because ignitable fibers or flyings are present (or may be present) in quantities sufficient to produce explosive or ignitable mixtures.


Usage & Storage Limits - Flammables

MAXIMUM ALLOWABLE QUANTITY PER CONTROL AREA OF HAZARDOUS MATERIALS POSING A PHYSICAL HAZARDa, j, m, n, p

MATERIAL	CLASS	GROUP WHEN THE MAXIMUM- ALLOWABLE QUANTITY IS EXCEEDED	STORAGE ^b		USE-CLOSED SYSTEMS ^b			USE-OPEN SYSTEMS ^b		
			Solid pounds (cubic feet)	Liquid gallons (pounds)	Gas cubic feet at NTP	Solid pounds (cubic feet)	Liquid gallons (pounds)	Gas cubic feet at NTP	Solid pounds (cubic feet)	Liquid gallons (pounds)
Elammahla aga	Gaseous	H-2	NA	NA	1,000 ^{d,e}	NA	NA	1,000 ^{d,e}	NA	NA
Flammable gas	Liquefied			(150) ^{d,e}	NA		(150) ^{d,e}	NA		
Classical Carrier	IA	H-2 or H-3	NA	30 ^{d, e}	NA	NA	30 ^d	NA	NA	10 ^d
Flammable liquido	IB and IC			120 ^{d, e}	NA		120 ^d			30 ^d
Flammable liquid, combination (IA, IB, IC)	NA	H-2 or H-3	NA	120 ^{d, e, h}	NA	NA	120 ^{d, h}	NA	NA	30 ^{d, h}

Solid Hollow Fiber Cooling Crystallizer



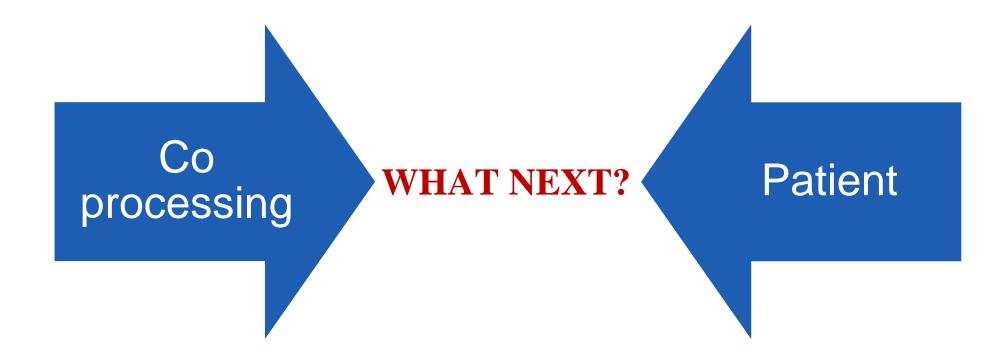
	Hollow Fiber I. D.	Hollow Fiber O.D.	Material	Numbers of fibers	Length	Shell diameter
Small module	420 μm	575 μm	Polypropylene (PP)	23	47 cm	8 cm
Large module	420 μm	575 μm	Polypropylene (PP)	46	47 cm	8 cm

^{*}D.M. Zarkadas and K.K. Sirkar, "Solid Hollow Fiber Cooling Crystallization", Ind. Eng. Chem. Res., 43,7163 (2004).

Continuous co processing by CPT

Schematic diagram of solid hollow fiber cooling crystallization setup for continuous polymer coating of submicron and nanoparticles

Quality & testing considerations


- Define CQAs based on CMAs & CPPs
- Assess impact of co processing on
 - Chemical stability of API
 - Residual solvent
 - Polymorphic changes
- In process tests & use of PAT
- Ratio of API & excipient
- Analyze co processed API stability based on historical data from
 - forced degradation studies,
 - D/E compatibility studies,
 - prototype, scale up & clinical batches
- Bulk hold stability studies before & after addition of excipient till DP mfg.
- Clinical performance of DP with co processed API & pure API
- Control strategies to achieve consistent quality

Regulatory considerations

- Co processed API is DS, API mix, intermediate or other?
- Perform QRA robustness of formulation process vs. API properties
- Acceptance criteria for co processed API as DS –
 Improved physical properties (shape, PSD, etc)
 Specific mfg. conditions
- Release testing of co processed API
- Acceptance criteria/justification of physical properties up on storage
- Shelf-life assignment
- Specifications for co processed API (Q6A)
- Which sections of 3.2.S and/or 3.2.P need to be updated?

Acknowledgements

Don Kientzler Veeran Kadajji Kaushalendra Chaturvedi

Q&A

THANK YOU

