Dissolution Similarity Applications in New Drug Product Development – Issues and Challenges – Case Studies

Limin Zhang (on behalf of IQ Dissolution WG) Senior Research Scientist II Bristol-Myers Squibb Company

Acknowledgement

- Andreas Abend/ Andre Hermans, Wei Zhu -Merck & Co., Inc.
- Greg Rullo Astrazeneca
- Carrie Coutant Eli Lilly
- Martin Mueller-Zsigmondy Novartis
- Michael J. Cohen, Dorys A. Diaz Pfizer
- Talia Flanagan UCB
- Amy Bu Bristol-Myers Squibb Company

Outline

- Dissolution testing an innovator company perspective:
 - Role of dissolution and similarity comparison
 - Dissolution similarity challenges and issues
- Case studies to illustrate common challenges
- Conclusions

Dissolution in new drug product development

Routine commercial batch release Consistent clinical **Post-approval** performance; changes Process development and Formulation scale-up screening to Optimization Early Post-Clinical Development approval Phase 1-3 Dissolution similarity comparison Quantitative Qualitative

Common application of *in vitro* dissolution methodologies and role of similarity comparison

Dissolution similarity – practical challenges and issues

> Is the method aligned with the purpose of the dissolution test?

Process sensitivity versus bioperformance?

> Is *in vitro* dissolution always a measure of bioperformance?

For BCS 1 or III probably not!

Discriminating Power of the Dissolution method:

Foo sensitive <-> not sensitive enough?

General lack of CRDS and general lack of global harmonization

Product Portfolio Distribution

7

Case study 1: Traditional f2 poses potential manufacturing challenges

- BCS 2 compound using enabled technology (ASD)
- Method was developed within "global" regulatory framework:
 - Method requires surfactant to achieve sink and solution stability
 - Need to balance method conditions and "discriminating" power

> Tablet hardness very sensitive towards compression force

- Dissolution profile is very sensitive to tablet hardness
- Risk that the commercial process may be constricted by a narrow compression window

8

Justification of a wider processing space

Hermans A, Abend A, Kesisoglou F, Flanagan T, Cohen MJ, Diaz DA, et al. Approaches for Establishing Clinically Relevant Dissolution Specifications during Drug Development. AAPS J. 2017;19(6):1537-49.

Level C IVIVC provides a safe space for dissolution -> process space!

IQ Confidential - 2018

9

Be well

Case study 2: Clinically Relevant Specifications in early product development

Establishing a link between *in vitro* dissolution performance and *in vivo* PK to enable formulation and process development and justification of the approved dissolution specification ("QC method").

	Description – In Vitro In Vivo Study			
Standard tablet	tablet batch with a typical in vitro dissolution profile			
Tablet Variant A	Process variant : Over granulated and over-compressed			
Tablet Variant B	Process variant : Over granulated (extreme) and over-compressed, only large (>1 mm) particles used for compression			
Tablet Variant C	Formulation variant : Double the amount of binder and no disintegrant			

Dissolution specification justification

• The specification limit has been established on the basis of an evaluation batches dosed in pivotal clinical Phase 3 studies, and the results of the *in vivo* study.

• The single-point specification of Q=70% at 45 minutes is well within the range where bioequivalence has been demonstrated, and provides assurance of batch-to-batch consistency in dissolution performance

Product variant and dissolution performance assessment to establish CRDS

Comparisons of exposures from Study 55 versus standard tablet according

Treatment	AUC (ng.h/mL)		Cmax (ng/mL)	
	GLS mean	GLS mean ratio (90% CI)	GLS mean	GLS mean ratio (90% CI)
Standard tablet	2887.0	-	491.3	
Tablet variant A	2781.7	0.97 (0.90, 1.06)	512.0	1.05 (0.95, 1.16)
Tablet variant B	2925.8	1.02 (0.94, 1.10)	514.0	1.04 (0.94, 1.15)
Tablet variant C	2703.6	0.97 (0.89, 1.05)	440.8	0.91 (0.82, 1.00)

Area under the plasma concentration-time curve from zero to infinity.

Maximum plasma (peak) drug concentration after single dose administration.

Confidence interval.

Passed standard bioequivalence criteria 0.80 to 1.25

12

Conclusions

Geomean plasma concentrations over 72 hours following

- All of the slowly dissolving tablet variants dosed gave *bioequivalent* exposures to the standard tablets dosed in pivotal clinical Phase 3 studies.
- The study data demonstrate that commercial dissolution method is significantly over-discriminatory with respect to *in vivo performance*

Case study 3: Background

- Highly soluble, slowly dissolving drug substance, blended capsule formulation.
- Appearance in plasma is slow due to holding compartment kinetics and saturation (dissolution is not rate limiting).
- Dissolution method is highly discriminating for particle size.
- PBPK absorption model predicts no impact to absorption or exposure across a wide particle size range.
- Model predictions are supported by in vivo data on a range of formulations and particle size, showing no significant impact to exposure.

Development and Clinical Experience Lilly

Fastest and slowest representative clinical batches do not meet f₂ criteria.

Risk that future SUPAC type changes may not meet f₂ criteria, despite meeting the dissolution acceptance criteria, and despite the lack of impact to in vivo exposure.

Case study 4: Background

- A capsule formulation used in clinical development is compared with a film-coated tablet formulation which is used as commercial formulation
- compound is BCS category 3, does not fulfill the dissolution criterion of very rapidly dissolving
- > the f2 similarity approach failed
- ➤a BE study showed perfect bioequivalence for both formulations.
- pH1: f2 = 15 pH2: f2 = 43 pH4: f2 = 48 pH6: f2 = 48 pH6: f2 = 48 pH6: f2 = 40 pH6: f2 = 48 pH
- A PBPK absorption modeling approach demonstrated a permeability controlled absorption -> small differences in dissolution performance are not biopredictive

BE Study and PBPK based modeling

NOVARTIS

Case study 5: Post approval changes

- Regulatory filing requirement: comparative dissolution of post change batch(es) to pre-change batch(es) in the application medium
- Slight difference in country requirement.
 - Australia: three pre-change batches and one post change batch
 - EU: no requirement on dissolution profile comparison
 - US: Level 3 change. Dissolution in QC medium, one batch each
 - Taiwan: in three compendia media (pH 1.2, 4.5 and 6.8), one batch each

Bristol-Myers Squibb

17

Justification of manufacture site changes

- A BE study was previously conducted on Ph 2 and Ph 3 formulations which have very different dissolution profiles (f2 can't be used due to too few data points < 85% for Ph 2 formulation).
- The BE study shows perfect bioequivalence between these two formulations despite dissolution difference.
- The dissolution profile for postchange batch meets dissolution specification and falls between the Ph 2 and Ph 3 profiles, thus, the site change was justified.

Ph 2 (2x30 mg) vs Ph 3 (60 mg):

Ph 2 vs Ph 3 formulation:

- Similar excipients
- Different drug load
- Bioequivalent
- Different disso profile

Conclusion

- Regulatory decisions based on dissolution profile comparisons are unlikely going away soon
 - Dissolution as a surrogate of bioperformance is deeply rooted in regulatory guidance practiced globally
 - Most practical option for lifecycle management of commercial products
- Ambiguity of the dissolution method in the absence of an established link to *in vivo* performance is the weakness in *any* decision based on the test!
 - It is the responsibility of the Industry to establish this link
 - Highly desirable for global alignment to accept CRDS
- In the absence of clinically relevant dissolution specifications, dissolution similarity as acceptance criteria maybe appropriate

Thank You! Q&A

20

IQ Confidential – 2018