

## Application of Stochastic Deconvolution in IVIVC Development

Maziar Kakhi<sup>\*</sup>, Ph.D. *FDA Silver Spring, MD 20993* 

Maziar.kakhi@fda.hhs.gov

M-CERSI / FDA Conference on Dissolution and Translational Modeling Strategies Enabling Patient-Centric Product Development

Baltimore MD, May 15-17, 2017

\* Disclaimer: The views expressed in this presentation are those of the author and do not reflect the opinion nor the policy of the FDA.



## **Presentation Overview**

- Background
- How is Stochastic Deconvolution Applied?
- Proof of Principle using Simulated PK Data
- IVIVC Example using Clinical PK Data
- Conclusions and Future Goals

Figures, comments and ideas presented in these slides are taken primarily from the following publications:

Kakhi and Chittenden, J Pharm Sci. 102:4433–4443, 2013

Kakhi et al. J Pharm Sci. 2017 DOI: 10.1016/j.xphs.2017.03.015 [In Press].



#### What is Stochastic Deconvolution?

- A parameter estimation method / diagnostic tool used to inform on a mapping function for level A IVIVC development.
- Based on a system of ODEs representative of compartmental PK.
- The absorption coefficient  $(k_a)$  is expressed as a mixed effect.
- The random effect on  $k_a$  is modeled as a Wiener Process\*.
- Embedded in a nonlinear mixed effects population-PK formalism.

<sup>\*</sup> Wiener Process: a stochastic process characterized by statistically stationary and independent increments that are normally distributed, continuous in time, have an expected value of zero, and a variance representative of the process noise.



#### What Benefits does it offer?

- A modeling option when complete mechanistic knowledge of the system dynamics is not available.
- Not limited to linear, time-invariant (LTI) systems.
- No need for reference treatment to determine the UIR.
- Mathematically rigorous framework for addressing variability.
- Can support two-stage deconvolution and one-stage convolution approaches.



#### What Limitations can it have?

- Parameter estimation may be inconclusive due to underlying modeldata complexity.
  - No or poor convergence
  - Parameter identifiability issues
  - Uniqueness of solutions
- Blood draw sampling times may be inadequately distributed for ER treatments in order to determine system characteristics (V, CL).







## How is it applied?

• Structural parameters  $V_1$  and  $k_e$ : mixed effects with assumed lognormal distribution.

$$V_1 = \theta_{V_1} \cdot e^{\eta_{V_1}}; k_e = \theta_{k_e} \cdot e^{\eta_{k_e}}$$

• Absorption rate coefficient is modeled as a mixed effect.

$$k_a(t) = \theta_{k_a} \cdot e^{\sum \eta_{k_a}(t)}$$

• Random walk for  $\eta_{k_a}$  at any given time is the sum of all random effects up to and including that time.

$$\sum \eta_{k_a}(t) = \sum_{t_i \le t} \eta_{k_a}(t_i)$$
$$\eta_{k_a}(t_i) = w_i \cdot \sqrt{(t_i - t_{i-1})}$$

•  $w_i \sim N(0, \sigma_w^2)$ . Variance  $\sigma_w^2$  assumed to be constant.



## How is it applied?

• The data are combined for a given subject to include all formulation treatments (*FID*).

 $t_{RAT} = (FID - 1) * WashOutTime + t$ 

- Between the observation times the random walk on  $k_a$  is held fixed and the compartmental PK ODEs are solved.
- Specification of an error model to build the likelihood function.
- A maximum likelihood estimate criterion is employed to solve the NLME system.
- To-be-estimated parameters:  $\theta_{V_1}$ ,  $\theta_{k_e}$ ,  $\theta_{k_a}$ , all  $\eta_{k_a}(t)$ ,  $\eta_{V_1}$ ,  $\eta_{k_e}$ ,  $\sigma_{V_1}^2$ ,  $\sigma_{k_e}^2$ ,  $\sigma_w^2$ , and residual error of error model.
- Calculations performed with Phoenix/WinNonlin 6.4 using Phoenix model object coupled to custom PML code.



- Consider 3 types of PK systems kinetics.
  - Linear, time-invariant (LTI)
  - Nonlinear based on Michaelis-Menten clearance (MM)
  - Time variant: Enterohepatic circulation (EHC).
- Specify an *a priori* known absorption profile.
- Define 12 subjects with respective V and CL (based on a log-normal distribution).
- Apply 1-compartment PK specified as identifiable underlying model.
- Use stochastic deconvolution on simulated Cp(t) data to determine if specified (known) absorption profile can be recovered.

















- ER tablet formulation approved by the FDA.
- Drug release rate controlled by coating thickness applied after compression stage.
- Linear PK over a dose range of 100-400 mg.
- Highly water soluble. IR formulation has an absolute BA  $\approx$ 75%.



#### Does stochastic deconvolution work with real data?

Scenarios considered for stochastic deconvolution to calculate  $F_{abs}$ :

- 1. Using a single compartment PK framework and *in vivo* data from the IR and all ER treatment arms to inform on the estimation of the model's structural parameters ( $k_a$ ,  $V_1$ , and  $k_e$ ).
- 2. Same as scenario 1, but using *in vivo* data just from the ER treatment arm (i.e. reference formulation data withheld).
- 3. Same as scenario 1 but using a 2-compartment PK framework ( $k_{12}$ , and  $k_{21}$  modeled as fixed effects).
- 4. Same as scenario 3 but using *in vivo* data just from the ER treatment arm (i.e. reference formulation data withheld).

Solution also sought using numerical deconvolution for comparison.











| Formulation      | Parameter           | Observed | Percent Prediction Error (%PE) = $\left(\frac{\text{Predicted-Observed}}{\text{Observed}}\right) \times 100$ |             |           |             |       |
|------------------|---------------------|----------|--------------------------------------------------------------------------------------------------------------|-------------|-----------|-------------|-------|
|                  |                     |          | SD_1PK_IR                                                                                                    | SD_1PK_noIR | SD_2PK_IR | SD_2PK_noIR | ND    |
| Fast             | AUC <sub>last</sub> | 2787     | -11.2                                                                                                        | -8.8        | -9.3      | -9.2        | -3.4  |
|                  | C <sub>max</sub>    | 168      | -8.7                                                                                                         | -10.7       | -11.5     | -9.5        | -12.6 |
| Medium           | AUC <sub>last</sub> | 2716     | -11.1                                                                                                        | -8.6        | -9.2      | -9.2        | -3.9  |
|                  | C <sub>max</sub>    | 128      | -0.85                                                                                                        | -1.0        | -3.1      | -1.3        | -3.3  |
| Slow             | AUC <sub>last</sub> | 2301     | -0.64                                                                                                        | 2.2         | 1.4       | 1.5         | 7.2   |
|                  | C <sub>max</sub>    | 103      | 15.5                                                                                                         | 15.4        | 13.0      | 14.9        | 13.1  |
| ⟨ % <b>PE</b>  ⟩ | AUC <sub>last</sub> |          | 7.6                                                                                                          | 6.6         | 6.7       | 6.6         | 4.8   |
|                  | C <sub>max</sub>    |          | 8.4                                                                                                          | 9.0         | 9.2       | 8.6         | 9.6   |



#### Conclusions and Future Goals

- Stochastic deconvolution's predictive accuracy was verified under simulated conditions with a known absorption rate and an identifiable PK model.
- Simulated PK systems falling outside classical numerical deconvolution's scope were successfully handled.
- The stochastic deconvolution scenarios, as well as numerical deconvolution, yielded very similar results with respect to the IVIVC validation.
- Encouraging results could be achieved with stochastic deconvolution without recourse to IR data.
- Future work will look at systems where numerical deconvolution is known to fail to produce a predictive IVIVC.



#### Acknowledgments

- Jason Chittenden, Ph.D., qPharmetra LLC, Andover, MA 01810, USA
- Sandra Suarez-Sharp Ph.D., Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
- Terry Shepard, Ph.D., Medicines and Healthcare Products Regulatory Agency, 151 Buckingham Palace Road, London SW1W 9SZ, UK



# **Back Up slides**



#### **Classical Deconvolution**



• Inverse of convolution:

$$C(t) = \int_0^t g(t-\tau)f(\tau)d\tau \quad \Rightarrow \quad f(t) = \mathrm{L}^{-1}\left\{\frac{C(s)}{g(s)}\right\}$$

• Ill-conditioned problem. Indirect methods used to calculate f(t)



#### Constitutive Equations without EHC

$$F_{abs}(t) = \alpha F_{diss}(t_{vitro}) \begin{cases} t_{vitro} = \beta t \\ F_{diss}(t_{vitro}) = F_{diss,\infty} \left[ 1 - \exp\left( - \left(\frac{t_{vitro}}{T_{diss}}\right)^b \right) \right] & \text{profile} \end{cases}$$

$$\frac{dA_a}{dt} = \left\{ -D \frac{dF_{abs}}{dt} & \text{Baseline estimation, IVIVC prediction} \\ -k_a A_a & \text{Stoch Decon estimation} \end{cases}$$

$$\frac{dA_1}{dt} = k_a A_a - k_e A_1 - k_{12} A_1 + k_{21} A_2 \\ \frac{dA_2}{dt} = k_{12} A_1 - k_{21} A_2 & \text{For 1-compt, } k_{12} = k_{21} = 0 \\ C_1(t) = \frac{A_1(t)}{V_1} \\ CL & CL = \frac{V_m}{(C_1 + K_m)} & \text{For Michaelis-Menten example} \end{cases}$$

$$22$$



#### Constitutive Equations with EHC





Parameters for Weibull Dissolution Distribution

| Formulation | Form ID (FID) | F <sub>diss,∞</sub> | $\overline{T}_{diss}$ | b   |
|-------------|---------------|---------------------|-----------------------|-----|
| [-]         | [-]           | [-]                 | [h]                   | [—] |
| Fast        | 1             | 1                   | 2                     | 2   |
| Medium      | 2             | 1                   | 4                     | 2   |
| Slow        | 3             | 1                   | 8                     | 2   |

Parameters for EHC model data generation

| Parameter                | Value                                                                 |
|--------------------------|-----------------------------------------------------------------------|
| $k_a  [h^{-1}]$          | 2                                                                     |
| $k_g$ [h <sup>-1</sup> ] | 4                                                                     |
| f <sub>b</sub> [-]       | 0.5                                                                   |
| $f_g(t)$ [–]             | $\begin{cases} 0 & t < 24, t > 26 \\ 1 & 24 \le t \le 26 \end{cases}$ |





#### Simulated Fabs vs Time Profiles, LTI & MM

Simulated Fabs vs Time Profiles, EHC



#### Concentration-time profiles for all subjects receiving FID = 2 based on the PK models LTI, MM, and EHC





Sensitivity of fraction absorbed using stochastic deconvolution (*Fabs SD*) for LTI kinetics subject to various random walks. Points denote the baseline result (*Fabs BL*)





Numerical (dots) and stochastic (line) deconvolution using the same UIR parameters as input.



www.raa.gov



#### Constitutive Equations for IVIVC-Predicted PK

• Assume linear IVIVC model with constant time scaling:

$$\bar{F}_{abs}(t) = A_s F_{diss}(T_s t)$$

• Rate of drug loss from the absorption compartment:

$$\frac{d\bar{A}_a}{dt} = -D A_s T_s F_{diss,\infty} \frac{b}{\bar{T}_{diss}} \left(\frac{T_s t}{\bar{T}_{diss}}\right)^{b-1} e^{-\left(\frac{T_s t}{\bar{T}_{diss}}\right)^b}$$
$$\frac{d\bar{A}_1}{dt} = -\frac{d\bar{A}_a}{dt} - \widetilde{k_e} \bar{A}_1 - \theta_{k_{12}} \bar{A}_1 + \theta_{k_{21}} \bar{A}_2, \text{ where } \widetilde{k_e} = \exp\left[\frac{1}{N} \sum_{i=1}^N \ln(k_{e,i})\right]$$

- $\widetilde{k_e}$  is the log-mean (or geometric mean) of the post-hoc estimates of subject elimination rate coefficients.
- Mass transfer relationship for the peripheral compartment:

$$\frac{d\bar{A}_2}{dt} = \theta_{k_{12}} \; \bar{A}_1 - \theta_{k_{21}} \bar{A}_2$$

• Averaged IVIVC-predicted plasma concentration:

$$\overline{C}_{1}(t) = \frac{\overline{A}_{1}(t)}{\widetilde{V}_{1}}, \ \widetilde{V}_{1} = \exp\left[\frac{1}{N}\sum_{i=1}^{N}\ln(V_{1,i})\right]$$
<sup>29</sup>



#### PK Parameters (Standard Errors) and Shrinkages

| Comparia                       | V <sub>1</sub> or V <sub>ss</sub> (CV%) | k <sub>e</sub> (CV%) | Shrinkage [-] |                    |      |
|--------------------------------|-----------------------------------------|----------------------|---------------|--------------------|------|
| Scenario                       | [L]                                     | [h <sup>-1</sup> ]   | $\eta_{v}$    | $\eta_{\text{Ke}}$ | Е    |
| 1. SDcon: 1 Comp PK with IR    | 332 (3%)                                | 0.12 (6.6%)          | 0.22          | 0.021              | 0.21 |
| 2. SDcon: 1 Comp PK without IR | 324 (0.8%)                              | 0.10 (0.9%)          | 0.54          | 0.73               | 0.37 |
| 3. SDcon: 2 Comp PK with IR    | 335 (1.1%)                              | 0.14 (1.6%)          | 0.17          | 0.32               | 0.32 |
| 4. SDcon: 2 Comp PK without IR | 354 (1.1%)                              | 0.11 (1.1%)          | 0.41          | 0.08               | 0.41 |