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PBPK, Translational Biopharmaceutics
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Successful PBPK models on PPI prediction 
and Label lmpact

 Farydak has pH dependent 
solubility (BCS II). However, 
solubility is relatively high. 

 Q:  Will Proton Pump Inhibitors 
(PPI) impact Farydak Exposure?

 Should a Clinical PPI study be run?
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http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm
http://www.accessdata.fda.gov/drugsatfda_docs/nda/2015/205353Orig1s000
TOC.cfm

Public domain: 

http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm
http://www.accessdata.fda.gov/drugsatfda_docs/nda/2015/205353Orig1s000TOC.cfm


Clinical PPI study was waived based on PBPK 
modeling and simulations are used on labels
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Absorption is not pH dependent over 
the pH range from 0.5 to 8. 

http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm
http://www.accessdata.fda.gov/drugsatfda_docs/nda/2015/205353Orig1s000TOC.cfm

http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm
http://www.accessdata.fda.gov/drugsatfda_docs/nda/2015/205353Orig1s000TOC.cfm


Outline

 Applications of PBPK modeling of formulation 
dependent exposure and BCS/BDDCS

 Case examples: 
Prediction on PPI effects

Formulation dependent PBPK

Food effect predictions

Comparison of IVIVC vs PBIVIVC

Biorelevant Permeability Challenges

 Overall recommendations

7

Compound E



Compound E Absorption Modeling
 Modeling objectives

1. To assess BE equivalence/in-equivalence a priori knowing in 
vitro dissolution differences between early human CSF 
(capsule) and late development FMI (tablet)

Q: Will FMI formulation be equivalent to CSF? 

2. To assess impact of stomach pH on Compound E absorption
(e.g. possible effect of co-administered PPI)

Q: Will GI pH impact the extent of absorption?
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In vitro data
No significant change in solubility with pH in bio-relevant media

 Slight pH-dependent solubility observed
• High solubility at low pH (>2.4 mg/mL at pH 2 and 4.5)
• ~3-fold decrease in solubility at pH 6.8 (0.8 mg/mL)
• Solubility in bio-relevant media (FaSSIF) at pH 6.5 is equivalent to solubility at 

lower pH

Solvent pH Solubility at 37°C (mg/mL)a

HCl/KCl buffer 2.0 > 2.4 mg/mL
Acetate buffer 4.5 > 2.4 mg/mL

Phosphate buffer 6.8 0.8 mg/mL
Phosphate buffer 7.5 0.3 mg/mL

FaSSIF 6.5 > 2.4 mg/mL
FeSSIF 5.0 > 2.2 mg/mL

a



pH-Dependent Solubility
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Low Clinical Relevance of pH-Dependent Solubility based on Low Dose Number

Drug
(Max Dose)

pKa Solubility pH-
dependent 
solubility

BCS / 
BDDCS
class

Dose number 
(max dose/250
mL / lowest 
solubility)

Clinical 
relevance (AUC 
/ Cmax)

Dasatinib
(100 mg)

3.1, 6.8, 
10.8

18 mg/mL at pH 2.6 to <0.001 mg/mL at pH 7.0 at 
24 °C

Yes II 560 43% / 42%

Nilotinib
(400 mg)

2.1, 5.4 Slightly soluble (1–10 mg/mL) at pH 1.0, very 
slightly soluble (0.1–1 mg/mL) in water, at pH 2.0 
and pH 3.0, and practically insoluble (<0.1 
mg/mL) in buffer solutions of pH ≥ 4.5

Yes IV / II 160 34% / 27%

Axitinib
(5 mg)

4.8 Solubility decreases from 1.8 mg/mL at pH 1.1 to 
0.0002 mg/mL at 7.8

Probably not 
clinically 
applicable

II 100 15% / 40%

Imatinib
(400 mg)

7.7 Freely soluble (100–1,000 mg/mL) up to pH 5.5, 
the solubility reduces at higher pH; lowest 
solubility 1 mg/mL

Yes II 1.6 No effect

Everolimus
(10 mg)

NA Solubility in aqueous media is <0.01% (0.1 
mg/mL) across the pH range 2–10

No III / I 0.4 No study 
conducted

Ceritinib
(750 mg)

4.1, 9.7 Highly soluble at pH 1 (11.9 mg/mL) and 2 (5.5 
mg/mL); solubility decreases to 0.01 mg/mL at pH 
6.0

Yes IV 1000 76% / 79%

Palbociclib
(125 mg)

NA Slightly soluble (1.135 mg/mL) at pH 1 and 1.205 
mg/mL at pH 4. Solubility decreases to 0.026 
mg/mL at pH 6.8

Yes NA 19.23 62% / 80% 
(Fasted)
13% / 41% (Fed)

Comp. E 5.5, 8.6 Highly soluble at pH 2.0 and 4.5; solubility
decreases to 0.8 mg/mL at pH 6.8

Yes IV 3-8 Unknown
(Expected to be
low based on 
dose number)

Adapted from Budha et al., (2012) CPT 92(2):203-213. Palbociclib solubility data obtained from Sandoz. 



PBPK Absorption Model 
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Z-factor dissolution (Takano)
 Enable to consider the change of Compound E drug

product dissolution rate vs pH during the drug transit
in the gut
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Z-factor vs pH for capsule Z-factor vs pH for tablets



PBPK model built in GastroPlus™
 PK was fitted with a 2 comp model using PKPlus

• default gut physiology for humans at fasted state (Human – Physiological – Fasted) and the 
Absorption Scaling Factors (ASF) model named OptlogD Model SA/V 6.1

• Johnson dissolution model
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Fitting with
2 comp model Optimization of Vc and K12 to improve the fit



PK model qualification
 PK model established for Capsule in HV simulate correctly PK in Patients, 

PK with Tablets, using either Johnsson or Z-factor models
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Absorption Kinetics – Diagnostic Plots
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Dissolution controlled or permeability controlled?

 Compound E: permeability-
controlled absorption

• Example: dissolution-
controlled absorption

Dissolution

Absorption

Dissolution
Absorption



BE study outcome
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Predicted versus observed plasma concentration profiles

observed

predicted



 Change of stomach pH has no impact on drug absorption
(rate and extent)

 Consequently, no predicted effect on PK

PBPK PSA
Influence of stomach pH on Compound E absorption
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PK model qualification
 PK model established for Capsule in HV simulate correctly PK in Patients, 

PK with Tablets, using either Johnsson or Z-factor models
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Model of
interest to
Predict
Food effect



Prediction of Food effect, Compound E
Simulation Fasted State Simulation Fed State

High and similar solubility measured in FaSSIFv1 and FeSSIFv1 



Prediction of Food effect, Compound E

20

Food Effect 
prediction

Cmax 
(ng/mL)

AUC0-168h 
(ng.h/mL)

Fasted 823.23 12090
Fed 764.29 12130
% change -7 0.3

It was predicted that Food would not 
affect PK, with:
- Only slight decrease on Cmax
- No change in AUC0-168h

Compound E showed no clinically
significant food effect



 Applications of PBPK modeling of formulation 
dependent exposure and BCS/BDDCS

 Case examples: 
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Food effect predictions
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Biorelevant Permeability Challenges

 Overall recommendations
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Compound F - Food Effect

 High Solubility,  > 10 mg/mL, Do < 1

 High Absorption > 80%, F > 80%, Fa > 80%
• Caco-2 low, no pgp involvement

 High Metabolism – mainly metabolized

 Rat BDDCS I
• No biliary excretion (Rat)

 No Adsorption/complexation issues

 Q: Can Food effect be predicted?

 No Food effect expected – Predictable Outcome!



Predicted vs Observed Food Effect, BCS I Drug in Human

FaSSIF
pH 6.5 solubility 
3.6 mg/ml

FeSSIF
pH 5 solubility 
4.2 mg/ml

Food Effect Can be predicted via ACAT model
23 | Heimbach, He

fedFasted



BCS I: Predicted vs Observed Food Effect in Human
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 Applications of PBPK modeling of formulation 
dependent exposure and BCS/BDDCS

 Case examples: 
Prediction on PPI effects

Formulation dependent PBPK

Food effect predictions

Comparison of IVIVC vs PBIVIVC

Biorelevant Permeability Challenges

 Overall recommendations

26 |Handan He AAPS 2016
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PBPK model for immediately release vs. slow release vs. fast release

Cmax ng/mL AUC0-24h
ng.h/mL

F
%

IR 3280 8060 100
FR (fast ER) 1350 5340 66
SR (slow ER) 715 3860 46

PB-IVIVC example NVS6 (BCS I): PK predictions in dogs by 
PB-IVIVC

IR FR

IR FR SR

AAPS 2016



PB-IVIVC example NVS6: In vitro and in vivo dissolution 
profiles in dogs

      
HPMC (fast and slow release) 

water, baskets @ 50 rpm  
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PB-IVIVC example NVS6: Regional absorption by PB-IVIVC

Reginal absorption: Immediately release vs. slow release vs. fast release

Immediately release Fast release

Slow release
Upper GI absorption

vs.
Lower GI absorption

Conclusion: Slow release 
showed more colonic absorption

29 AAPS 2016



PB-IVIVC example NVS6: Comparisons of conventional 
IVIVC vs PB-IVIVC

|Handan He AAPS 2016

PB-IVIVC showed better prediction compared to conventional IVIVC

30

Conventional 
IVIVC

Conventional IVIVC PB-IVIVC

AAPS 2016



Opportunities and challenges of modeling

Inform formulation – need for special 
formulations to optimize exposure

Investigate knowledge gaps in disposition and 
absorption mechanisms (e.g. low F is due to low 
absorption or high first pass effects?)

Translate PBPK models from animals to 
human/patients/special populations

For internal facilitation/informed decision making 
/bioequivalent (BE) evaluation

For biowaiver, if conventional IVIVC is 
challenging due to lack of data, it is suggested to 
also apply PB-IVIVC/virtual bioequivalence trial, 
e.g. MR development

A collective and multi-disciplinary paradigm

Applications of 
PBPK models:

Apply to selected 
compounds starting 
from CSP/sPOC

Applications of 
combining 
conventional IVIVC 
with PB-IVIVC
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 Applications of PBPK modeling of formulation 
dependent exposure and BCS/BDDCS

 Case examples: 
Prediction on PPI effects

Formulation dependent PBPK

Food effect predictions

Comparison of IVIVC vs PBIVIVC

Biorelevant Permeability Challenges

 Overall recommendations

32 |Handan He AAPS 2016

Drug U, Compound X



Biorelevant Permeability – Negative Food Effect Can Be Well 
Predicted Using PBPK Modeling
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Control FaSSIF FeSSIF

pH 6.5 Apical/pH 7.4 Basolateral

Incubation at 37°C, 3 hours

Absorptive permeability estimated as indicated below:
Papp = ∆Q/(∆t×C0×Area)

HBSS: Hank’s-buffered salt solution
HSA: human serum albumin (non-specific binding reduction)
SIF: simulated gastric fluid (lecitin, taurocholate, others)

Biorelevant Permeability
Modified from Dressman et al., (2000) EJPS, 11: S73-80
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HBSS
0.1% HSA

HBSS
0.1% HSA

HBSS 0.1% HSA, 
3.0 mM Taurocholate

0.75 mM Lecitin
(pH 6.5)

HBSS
0.1% HSA

HBSS 0.1% HSA, 
15 mM Taurocholate

3.75 mM Lecitin
(pH 5.0 →6.5)

HBSS
0.1% HSA



Compound X
Physicochemical and BDDCS data

| Marbach Castle 201635

Property
Melting point high

logP / logD6.8 > 4

Thermo. solubility [mg/mL]:
pH 1
pH 6.8
pH 7.4

0.003
n/a

Sim. fluids stability (8 h, 
37°C) and solubility [mg/mL]:
Fassif
Fessif

Stable
0.009
0.262

Permeability:
(1) log PAMPA
.

Mod
Pred. FA = 40 %

BCS,  BDDCS Class II, IV

Compound X
Rat BDDCS 4
 ~60% intact
 Fabs < 65%



Control FaSSIF FeSSIF

pH 6.5 Apical/pH 7.4 Basolateral

Incubation at 37°C, 3 hours

Absorptive permeability estimated as indicated below:
Papp = ∆Q/(∆t×C0×Area)

HBSS: Hank’s-buffered salt solution
HSA: human serum albumin (non-specific binding reduction)
SIF: simulated gastric fluid (lecitin, taurocholate, others)

Biorelevant Permeability
Modified from Dressman et al., (2000) EJPS, 11: S73-80
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HBSS
0.1% HSA

HBSS
0.1% HSA

HBSS 0.1% HSA, 
3.0 mM Taurocholate

0.75 mM Lecitin
(pH 6.5)

HBSS
0.1% HSA

HBSS 0.1% HSA, 
15 mM Taurocholate

3.75 mM Lecitin
(pH 5.0 →6.5)

HBSS
0.1% HSA



Compounds in Biorelevant Permeability Assay

| Marbach Castle 201637

Assessment for micellar complexation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

-FE Cpd x, 100 µM
-FE Cpd x,75 µM
-FE Cpd x, 50 µM
-FE Cpd x, 25 µM
- FE cpd 14, 11.6 µM
- FE cpd, 13, 11.6 µM

- FE cpd 13, 26.6 µM

Compound 1 

FaSSIF/FeSSIF ratio

Compound 3 
Compound 4 
Compound 5 

Compound 8 
Compound 9 
Compound 10 
Compound 11 
Compound 12 

-FE Cpd y, 15 
-FE Cpd z, 16 

Compound 2 

Compound 6 
Compound 7 

Negative food 
effect possible

• Class IV compounds were 
tested at concentrations in 
the soluble range as 
unformulated API 

• An arbitrary cut-off value of 
~3 for the FaSSIF/FeSSIF
permeability ratio is 
proposed to differentiate 
compounds likely to 
experience negative food 
effects from non-susceptible 
ones



IDAS Biorelevant Flux Data, Compound X

| Marbach Castle  201638

Faster dissolution in fed state media, but permeation is low
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Fasted Fed

• PBPK model utilized in vitro biorelevent permeability data 
• Negative food effect was simulated with reduced in vivo 

permeability input

PBPK simulations food effect for Compound X
Using permeability difference of ~4-6 (FaSSIF vs. FeSSIF) in C2BBe1 cells
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Compound X food effect assessments (Simcyp) 
permeability difference (FaSSIF vs. FeSSIF) in C2BBe1 cells

The green line is the simulated data

The difference in permeability for compound X in the C2BBe1 cells can 
be used to predict the magnitude of reduced exposure change of the high 
fat meal (Fed/fasted ratios ~ 0.3).
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For PBPK absorption models, conduct PSA for critical 
parameters

Evaluate absorption kinetics diagnostic plots

Takano z-factor model allows multiple pH dissolution profile data 
and can be included in exposure predictions, when profiles are 
available

Food effect can be predicted for well characterized BCS/BDDCS 
I/II compounds, especially when human fasted date 

Biorelevant Permeability with Fassif/Fessif can identify potential 
for potential bile acid complexation

Biorelevant Permeability, biorelevant solubility are important as 
PBPK inputs

42

Discussions Points



PPI: BCS II weak bases can show reduced 
AUC with high Dose number (>100)

BCS

II

II/IV
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200
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>1000

>300
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Number, Do

Budha, Benet, Ware, 2012
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