

Where is Cell Comparability Critical in the Development Path?

- Rigorous potency assessment is key in designing clinical strata/endpoints for clinical proof of concept
- Donor comparability is key whether comparing master cell banks or large donor sets
- Large scale manufacturing moves towards extended population doublings with need to assess safety and potency
- Ensuring distinction between competing products in adherent stem cell space enforcing and growing IP boundaries
- Building a Regulatory strategy for implementing major process changes (xeno-free media; alternate bioreactor work; driving down COGS)

Cell Equivalency for Minor Process Change

Cell equivalency assays Growth kinetics – telomerase activity Viability, attachment post thaw Defined cell population in size, granularity Acceptable expression of CXCL5, VEGF & IL8 Valid flow cytometric profile – identity and purity Normal karyotype qPCR marker expression Acceptable differentiation to osteo, adipo, chondro Activity in T cell proliferation assay Activity in angiogenesis assay

Automated quantitation of vascular tube formation assay

Tiered Equ	uivalency Testing
Primary Screen	Tertiary Screen
Growth Kinetics and population doubling	Replicative senescence endpoint
Freezing/thaw viability and attachment	Cell migration assay
Microscopic morphology and size	Telomerase assay
ELISA assay for CXCL5, IL-8, VEGF	Transcriptional profiling
Flow cytometry for size and phenotype	miRNA array
qPCR for pos/neg markers	Gene methylation array
Constraints Constraints	Proteomics screen
Secondary Screen	Mesodermal, endodermal, ectodermal assays
Replicative senesence endpoint	
Cytogenetics	Pre-Clinical Studies
in vitro differentiation assays	Murine diodistribution model
immunomodulation assay	Xenogeneic AMI model
Vascular tube formation	Xenogeneic Stroke/TBI model
Functional CNS assay	Xenogeneic GVHD model
Viability and stability (>24 hr) post thaw	Xiomarker models when available
Factor immunoblot	Acute toxicity in murine healthy animal
	Nude mouse tumorigenicity model

Qualification of ELISA as a Potency assay																
	Coefficient of Variance															
	Pooled			Lot 1	Lot 2 L					Lot 3	ot 3 Lot 4					
	VEGF	CXCL5	IL-8	VEGF	CXCL5	IL-8	VEGF	CXCL5	IL-8	VEGF	CXCL5	IL-8	VEGF	CXCL5	IL-8	
Between operators																
Day 1	3.713	4.712	2 3.895	9.861	6.031	12.558	7.670	4.306	13.779	9.513	2.835	2.877	7.859	4.616	2.862	
Day 2	9 074	2.113	6.761	4.279	3.759	5.604	5.933	5.788	4.048	4.391	5.582	10.090	4.862	6.665	16.938	
Dayz	0.074															
Between Days	- 0.074															
Between Days Operator 1	2.482	4.867	7 4.680	9.730	5.474	10.682	3.809	4.498	9.963	4.185	6.959	11.525	4.868	4.095	8.468	
Between Days Operator 1 Operator 2	2.482	4.867 5.374	7 4.680 1 5.900	9.730 3.189	5.474 10.594	10.682 7.315	3.809 7.825	4.498 6.116	9.963 6.467	4.185 3.105	6.959 7.796	11.525 17.689	4.868 2.778	4.095 7.870	8.468 14.108	
Between Days Operator 1 Operator 2 Both Operators and	2.482	4.867	7 4.680 1 5.900	9.730	5.474	10.682	3.809 7.825	4.498 6.116	9.963 6.467	4.185	6.959 7.796	11.525	4.868 2.778	4.095	8.468 14.108	
Between Days Operator 1 Operator 2 Both Operators and days	2.482 9.727 6.798	4.867 5.374 4.940	7 4.680 1 5.900) 5.020	9.730 3.189 7.249	5.474 10.594 8.352	10.682 7.315 8.950	3.809 7.825 6.551	4.498 6.116 5.205	9.963 6.467 10.066	4.185 3.105 7.114	6.959 7.796 7.209	11.525 17.689 18.499	4.868 2.778 6.702	4.095 7.870 5.790	8.468 14.108 11.010	
Between Days Operator 1 Operator 2 Both Operators and days	2.482 9.727 6.798	4.867 5.374 4.940	7 4.680 1 5.900 0 5.020	9.730 3.189 7.249	5.474 10.594 8.352	10.682 7.315 8.950	3.809 7.825 6.551	4.498 6.116 5.205	9.963 6.467 10.066	4.185 3.105 7.114	6.959 7.796 7.209	11.525 17.689 18.499	4.868 2.778 6.702	4.095 7.870 5.790	8.468 14.108 11.010	
Between Days Operator 1 Operator 2 Both Operators and days	2.482 9.727 6.798	4.867 5.374 4.940	7 4.680 1 5.900 0 5.020	9.730 3.189 7.249	5.474 10.594 8.352	10.682 7.315 8.950	3.809 7.825 6.551	4.498 6.116 5.205	9.963 6.467 10.066	4.185 3.105 7.114	6.959 7.796 7.209	11.525 17.689 18.499	4.868 2.778 6.702	4.095 7.870 5.790	8.468 14.108 11.010	

5/7/2013

