Mesenchymal Stem Cells: Clinical Application and outlook The CWRU experience

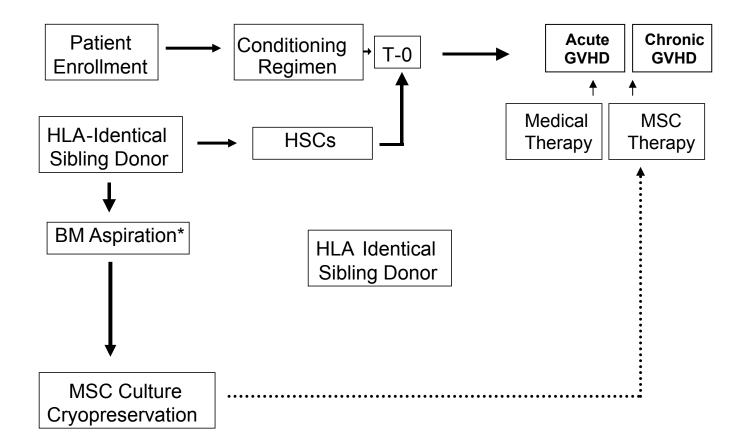
May 8, 2013

Stanton L. Gerson, MD

Asa & Patricia Shiverick and Jane Shiverick (Tripp) Professor of Hematological Oncology Director, Case Comprehensive Cancer Center Director, Seidman Cancer Center

Director, National Center for Regenerative Medicine

SCHOOL OF MEDICINE CASE WESTERN RESERVE UNIVERSITY


NATIONAL CENTER FOR REGENERATIVE MEDICINE

Phase I trials with MSCs 1992-2013

- Phase 1 infusion after autologous hematopoietic stem cell transplantation
- Phase 1 infusion during autologous stem cell transplantation for advanced breast cancer
- Phase 1 infusion after allotransplantation for congenital disorders
- Phase 1 infusion with allograft for AML and NHL

Bone Marrow Transplantation 16(4):557-64, 10/1995. , J Hematother 6(5):447-55, 10/1997; Exp Hematol 27(11):1675-81 11/1999 ; Bone Marrow Transpl 30(4):215-222 8/2002 ; Biol Blood Marrow Transplant 11(5):389-98, May 2005.

Phase I trial for steroid refractory GVHD CWRU 3Y03

*Occurs before HSC collection in acute and chronic GVHD and after HSC collection in chronic GVHD only

Case 3Y03: Matched related donor MSC culture expansion characteristics

Culture medium	Standard media	FGF supplemented
# cultures	18	6
age of donors	52 (38 - 67)	49 (39-58)
volume of marrow aspirate (median)	29 ml	37 ml
Infusion cell dose/kg	0.5 - 2.4 x 10 ⁶	1.7 - 2.4 x 10 ⁶
MSCs at harvest	161.0 ± 0.5 x 10 ⁶	158 ± 0.5 x 10 ⁶
days to harvest*	41 (23 - 66)	24.5 (20-41)

MSC release criteria

- >95% Viability
- Negative bacterial/fungal cultures
- >90% positive for MSC surface markers CD105, CD73, CD90
- <5% positive for hematopoietic surface markers CD14 and CD45
- No detectable mycoplasma or endotoxin

Lab Correlates

- Immune Studies (MLR and Elispot)
- Serum Cytokine Measurement (ELISA)
 IL-2, IFγ, IL-10, IL-4, TNF-α, IL-1
- MSC Chimerism in patients with skin GVHD (FISH)
- Circulating MSCs (15 min, and 1,2,3 days post infusion)

Factors influencing MSC expansion capacity: univariate analysis

Factor	coefficient	Odds ratio	p-value
Age (per year increase)	-0.077	0.926	0.227
Number of cells at P1 (per 10 ⁶ increase)	-0.015	0.985	0.761
Marrow volume (per unit increase)	0.0265	1.027	0.646
Days to first passage (per day increase)	-0.333	0.717	0.098
Number of MNCs in harvest (per 10 ⁶ increase)	-0.00073	0.999	0.875
Donor's sex (Male vs. Female)	-0.406	0.667	0.697

Evaluation of an FBS replacement for culture expansion of human MSCs

DMEM LG+ 10% FBS	Xenofree media
Isolate MNCs on Percoll gradient (1.073 g/ml)	Isolate MNCs on Ficoll gradient (1.078g/ml)
No surface coating of culture vessel	Collagen/fibronectin coating of surface vessel
Primary plating density 1.7x10 ⁵ MNCs/cm ²	Primary plating density 5x10 ⁴ MNCs/cm ²
Passage cells weekly at 95% confluence	Passage cells every 3-4 days at 70% confluence
Cell detachment agent: porcine trypsin	Cell detachment agent: accutase
Harvest cells at Passage 4 to characterize and assess purity	Harvest cells at Passage 4 to characterize and assess purity

Xenofree vs FBS: Culture Endpoints at Passage 3

	Xenofree	FBS
Immunophenotyping	CD105/CD73 99.07% n=4	CD105/CD73 98.49% n=4
Cell yield per 10cc starting marrow	297 x 10 ⁸ MSCs	2.85 x 10 ⁸ MSCs

Conclusion:

- Preliminary studies show that MSC culture in xenofree medium results in a **100x greater yield** per volume bone marrow compared to standard FBS containing medium.
- This results in less passages and less media to reach target dose and thus a shorter culture period

UTILIZING MSC TRANSPLANTATION TO TREAT MS: UPDATE ON AN ONGOING PHASE I TRIAL

Workshop on Transplant and Cellular Therapy for Autoimmune Diseases – CIBMTR 2013

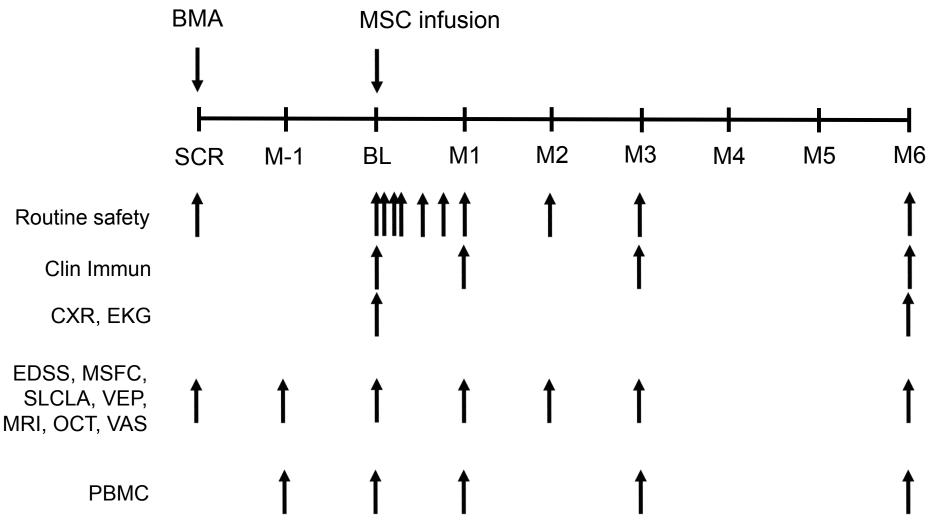
Jeffrey A. Cohen, MD Mellen Center for MS Treatment and Research Neurological Institute Cleveland Clinic

MSC Treatment of Multiple Sclerosis

Reference	Indication	Patients	MSC Source
Connick 2012	SPMS	10	Autologous culture-expanded BM MSCs administered IV
Karussis 2010	RR, SP, PP MS	15	Autologous culture-expanded BM MSCs administered IV and IT
Liang 2009	PP MS	1	Allogeneic umbilical cord MSCs administered IV and IT after CTX
Mohyeddin Bonad 2007	Treatment-refractory MS	10	Autologous culture-expanded BM MSCs administered IT
Rice 2010	Chronic MS	6	Fresh BM cells enriched for MSCs
Riordan 2009	Treatment-refractory MS	3	Autologous non-expanded adipose MSCs
Yamout 2010	SPMS	10	Autologous culture-expanded BM MSCs administered IT

Safety Considerations with MSC Transplantation

- Infusion-related adverse effects
 - Embolic phenomena
 - Immunogenicity including anti-FBS Ab
 - Bradycardia, MI, encephalopathy, stroke from DMSO
- Infection
 - Contamination
 - Immunosuppression
- Neoplasia
- Ectopic tissue formation
- MS related: allergic phenomena, autoimmunity, disease activation


Phase 1 Trial of Autologous MSC Transplantation in MS

IND	BB-13917
Clinicaltrials.gov	NCT00813969
Study Population	24 participants RR or SP/PR MS (~12 each) EDSS 3.0-6.5 Active disease in prior 24 months Afferent visual system involvement
Treatment	Single IV infusion of 1-2 x10 ⁶ /kg autologous culture-expanded bone-marrow-derived MSCs
Follow-up	2 months pre- and 6 months post-treatment
Correlates	immunoreactivity studies of MSC

Phase 1 Trial of Autologous MSC Transplantation in MS

Primary outcome	Feasibility, and infusion-related safety and tolerability over 1 month
Secondary outcomes	Safety and tolerability over 6 months GdE MRI lesions at Month 1
Exploratory outcomes	Pre- vs. post transplant: Self-reported overall status Relapses, EDSS, MSFC MRI: GdE, N/E T2, T2-vol, T1-vol,
	whole brain and GM atrophy, DTI, MTI
	Visual pathways: SLCLA, VEP, OCT
	Immunologic mechanistic studies

MS-MSC-001: Study Summary

Study Status

- Enrollment and Treatment
 - -24 of planned 24 participants enrolled
 - -21 participants infused
 - -1 culture failure; participant was replaced
 - -All the other participants received the target dose of cells

Study Status

- Follow-up
 - -15 participants have completed the study
 - All planned assessments have been performed
- Safety
 - -No treatment-related severe (CTCAE grade 3+) or serious adverse events
 - -No evidence of paradoxical disease activation
- Efficacy
 - Exploratory efficacy analyses are in progress
 Updated: 05 APR 2013

Culture Kinetics and Yield

	Percoll Yield (x10 ⁶)	Final Yield (x10 ⁶)	Culture Duration (days)	Dose (x10 ⁶ /kg)
Ν	21	21	21	21
Mean ± SD	481.5 ± 268.3	275.9 ± 129.1	29.6 ± 11.8	1.9 ± 0.2
Minimum	151.8	110.0	16	1.3
Maximum	1127.0	586.0	62	2.0

- 1 culture terminated at 28 days
- All other cultures were successful and cell products fulfilled the stringent release criteria
- Variable BMA yield of nucleated cells, MSC growth rate, and final yield
- No obvious correlation with demographics, other medical diagnoses, MS clinical features, or medications

Evaluation of an FBS Replacement for Clinical Grade Culture-Expansion of Human MSCs

Current Method (DMEM LG + 10% FBS)	Mosaic Media-Becton Dickenson
Isolate MNCs on Percoll gradient (1.073 g/ml)	Isolate MNCs on Ficoll gradient (1.078g/ml)
No surface coating of culture vessel	Collagen/fibronectin coating of surface vessel
Primary plating density 1.7x10 ⁵ MNCs/cm ²	Primary plating density 5x10 ⁴ MNCs/cm ²
Passage cells weekly at 95% confluence with media changes every 3 days	Passage cells every 3-4 days at 70% confluence
Cell detachment agent: porcine trypsin	Cell detachment agent: accutase

Harvest cells at Passage 4 to characterize and assess purity

Culture Endpoints at Passage 4

	Mosaic	FBS
MSC purity (immunophenotyping)	CD105/CD73 98.5% n=3	CD105/CD73 99.1% n=3
MSC yield per 10cc of starting marrow	2.85 x 10 ⁸	297 x 10 ⁸

Conclusion:

- Preliminary studies show that MSC culture in Mosaic medium results in a greater yield per volume bone marrow compared to standard FBS containing medium
- This results in fewer passages, less media, and a shorter culture period to reach the target dose

Mechanistic Studies Amit Bar-Or (Montreal NI)

Assessments

- Immune cell phenotyping by flow cytometry
- Myelin-antigen-specific proliferation and IFN γ production
- $T_h 1$, $T_h 2$, $T_h 17$ effector responses of CD4⁺ and CD8⁺ T-cells
- B-cell proliferation and cytokine production
- Regulatory functions of T_{reg} , NK, and B-cells
- Longitudinal assessment, comparing pre vs. post transplant:
- Months -1, 0, 1, 3, 6

Comparative Studies of MSCs from MS vs. normal donors

- MSC growth kinetics, differentiation
- Expression of signaling,immunoregulatory, & neurotrophic molecules
- Functional in vitro and in vivo immunologic and neurobiologic effects of MSCs and soluble products

MSC clinical trials in development at CWRU/UHCMC under our IND

- Autologous BM-derived MSC for intervertebral disk repair: IND and IRB approved protocol, preparing to open for accrual
- Autologous adipose-derived MSC for urinary incontinence: pre-IND
- Allogeneic BM-derived MSC for wet AMD: in development
- Allogeneic BM-derived MSC for cystic fibrosis: in development

MSC clinical development issues

- MSC source and release
- Optimizing culture expansion with potency
- Optimal cell transfer for multi-site use
- Validated potency, efficacy, characterization
- In vivo distribution, destiny, homing and longevity

Scenarios for clinical MSC manufacture to support multicenter trials

Centralized site	Site specific	Commercial
Heavy workload; personnel and space constraints	Manageable workload	Release tested product is infusion ready
One set of procedures	Site specific procedures	Best for "off the shelf" indications
Minimal variability	Variability in expertise between sites	Sponsor needs to manage inventory at all sites
Logistics and cost of shipping final product to clinical site	Requires a centralized QA to ensure quality of final product	Logistics and cost of shipping final product to clinical site