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Primary Human Bone Marrow Stromal Cells (hBMSCs)

Dominici et al. (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The 
International Society for Cellular Therapy position statement. Cytotherapy, 8:4, 315-317.

• Tex A&M Center, Darwin Prockop (Tulane/NIH) 
• Iliac crest harvest
• 29 yr old female 

Osteogenic Suppl.: 
• Dexamethasone
• Ascorbic Acid
• -Glycerophosphate

Negative (< 2%)
• CD45
• CD34
• CD14
• CD11b
• CD79a
• CD19
• HLA-DR

Positive (> 95%)
• CD105
• CD73 
• CD90 
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Primary Human Bone Marrow Stromal Cell (hBMSC) Osteogenic 
Differentiation: Alizarin Red Stain for Calcium
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Result: Nanofibers induce calcification
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Microarray Experiment (mRNA)

Experimental Design
• 72 Specimens = 72 Microarrays
• hBMSCs for all exps

• 4 Replicates
• 2 Times Points (1d, 14d)
• 9 Substrates

• TCPS
• TCPS+OS
• PCL_FFF
• PCL_GF
• PCL_BNF
• PCL_SC
• PCL_SNF
• PDLLA_BNF
• PDLLA_SC

Illumina Human HT-12v4 Microarrays
• 47231 probes 
• 25130 RefSeq annotated genes (NCBI/NIH)
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• Sort by treatment 
• Nanofibers similar to osteogenic controls
• Structure more important than chemistry (?) 

Microarray Experiment (mRNA)
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Why Do Nanofibers Induce Osteogenic Differentiation?  Cell Shape…
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n = 20 Cells

• Nanofibers & Films+OS = elongated & highly branched
• Films = hBMSCs more spread, more rounded & less branched
• Can drive shape change with scaffold structure or biochemicals (?) 

Red = Actin
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hBMSCs in Nanofiber Scaffolds

1 d, PDLLA_BNF spiked 
with Rhodamine 123

20 m
20 m Red = Actin

Green = Nanofibers

Kumar G, Tison CK, Chatterjee K, Pine PS, McDaniel JH, Salit ML, Young 
MF, Simon Jr CG (2011) The determination of stem cell fate by 3D scaffold 
structures through the control of cell shape. Biomaterials 32, 9188-9196.
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People: Tanya Farooque, Subhadip Bodhak, Sumona 
Sarkar, Michail Alterman, Kristin Schultz-Kuszak

Aims:
• Map the proteomic signature of hBMSCs
• Protein expression patterns during cell culture in 3D
• Compare predictive ability of transcriptome vs. proteome

Trypsin 
Digestion

Peptide 
Fractionation

ESI-MS/MS 
Analysis

Spot on MALDI 
Target Plate

MALDI-MS/MS 
Analysis

Cell LysishBMSCs

Protein ID & 
Quantitation

(~1000 proteins/run)

Protein 
Separation

• 4 Treatments, 14 d culture:
• PCL-NF
• PCL-SC
• TCPS
• TCSP (+)OS

• 2 biological replicates & 3 technical 
replicates

• 1 biological replicate = 2 X 48-well plates
• Total = 1600 wells & 48 mass spec runs
• Running microarrays in parallel 

Effect of Nanofiber Scaffolds on the hBMSC Proteome
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Microarray Experiment Not Reproducible

Conclusions:

2nd Experiment
Donor 8001R, 24 y female 

89 genes passed the 20% 1.5-fold filter

1st Experiment
Donor 7038 , 29 y female

853 genes passed the 20% 1.5-fold filter

• hBMSCs sort by treatment in both cases
• Nanofibers don’t sort with TCPS(+)OS in both cases
• Donor 8001 less responsive than Donor 7038

3rd Experiment: 6 donors, 
4 treatments, 1 replicate
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PV. Cytoskeleton-based forecasting of stem cell lineage fates. PNAS 2010;107, 610-5.

hBMSC Morphology & hBMSC State

Osteogenic MediumBasal MediumAdipogenic Medium

Angle
Area
Polygonal Area 
Area/Box
Aspect
Axis (major)
Axis (minor)
Box Height
Box Width
Box Ratio 
Dendrites
Dendritic Length 
Maximum Diameter
Mean Diameter
Minimum Diameter
End Points 
Maximum Feret Length
Mean Feret Length 
Minimum Feret Length
Fractal Dimension
Cell Area/Total Area
Perimeter

Perimeter2
Perimeter3 
Convex Perimeter 
Elliptical Perimeter 
Perimeter Ratio 
Maximum Radius
Minimum Radius
Radius Ratio
Roundness
Size (Length)
Size (Width)
Mean Density
Standard Deviation of Density
Sum of the Density
Integrated Optical Density
Holes
Hole Area
Hole Ratio
Margination
Heterogeneity
Clumpiness

43 Shape Descriptors

Cells in osteogenic 
medium segment 

from adipogenic or 
basal medium

High-content imaging, 43 shape descriptors, condense 
non-linearly into 3 dimensions and segment
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Cell Volume: Small hBMSCs More Potent

Colter DC, Sekiya I, 
Prockop DJ. PNAS 
v98, p7841, 2001

PCBM1641 at P7 sorted by volume:
• Large = 19.3 m = 1/296 (+) for adipogenesis
• Small = 14.6 m = 1/126 (+) for adipogenesis
• p = 0.02 Surdo JL, Bauer SR. Tiss 

Eng C, v18, p877, 2012

Donor # ID # Sex Age
(Years)

Diameter 
(Mean ± S.D.) (µm)

Donor 1 7038 Female 29 19.0 ± 0.3
Donor 2 8001 Female 24 18.6 ± 0.2
Donor 3 7071 Male 22 18.1 ± 0.1

Donor 4 7083 Male 24 17.7 ± 0.2

Donor 5 7076 Female 37 17.7 ± 0.0
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Conclusions
• Nanofibers enhance osteogenic 

differentiation
• Scaffold structure can be 

optimized to drive hBMSCs into 
morphologies that enhance 
differentiation

• Donor variability very important 
variable

DNA
(Genome)

mRNA
(Transcriptome)

Protein
(Proteome)

Ribosome-
Bound mRNA
(Translatome)Methylated DNA

(Epigenome)
(DNA Methylome)

miRNA
(miRNAome)

Conclusions & Future Directions

Future:
• Proteomics
• Multi-donor microarray experiment
• Cell shape and machine learning
• Cell volume
• Integrome
• Connectome = Integrome + Cell 

Shape Metrics 
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Cell Shape & Advanced 
Computation
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Scaffold Structure Directs Stem Cell Fate
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Microscopy
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Z-Slice
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Images are from Kumar et al., 2011
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Geometry-Driven Stem Cell Differentiation
● We would like to understand how geometry of 

the substrate induces stem cell differentiation

● Could design substrates to achieve desired 
differentiation

● Large number of parameters need to be tested 
for identifying appropriate scaffolds 

● Could also be used in scaffold systems for drug 
screening by pharmaceutical industry
● Cell Shape analysis could be used to determine 

toxicity response
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Computational Regenerative Medicine
Need to develop a framework for 
Big-Data-Driven Regenerative Medicine

● High-throughput Imaging

● High-performance Computing and 
Visualization

● Geometry-driven Quantitative Analysis
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Data-driven Classification of Stem Cells
Data Source:
● We used stacks of confocal microscopy images of 

size 2048 x 2048 x ~20
● Our sample set contained 41 cells, but future drug 

discovery applications may have 1000s of cells

“Parallel Geometric Classification of Stem Cells by Their 3D 
Morphology”.  Juba, Cardone, Ip et al. 2013.
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Classification of Stem Cells

● Cells with more thin branches are expected to have a 
larger number of short intersections

● Need an algorithm that is easily parallelizable for high 
throughput data computing
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Computing on CPUs and GPUs
● High memory bandwidth
● High number of cores
● High computational capability
● Partitioning the computational task between CPUs and 

GPUs
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In Silico Cell Shape Analysis
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Classification of Stem Cells

Number of Lines 103 104 105 106

CPU (ms) 50.1 492 4915 49154
GPU Atomic (ms) 3.56 6.74 45.7 450
GPU Reduction (ms) 14.1 20.1 83.4 743
GPU Lists (ms) 3.52 7.35 52.7 501

Comparison of algorithm running times.  The CPU algorithm was 
run on an Intel Xeon X5260 (using only one core) with 8 GB of 
RAM.  The GPU algorithms were run on an NVIDIA Tesla C2050 
(448 cores)
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Data-driven Learning
Once histograms are generated, they can be used to train 
an SVM classifier, which can then be used to classify new 
cell histograms as Nanofiber or Spun Coat
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Classification Results
Classification accuracy with our test data set was over 80%
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Conclusions and Future Work

● Initial steps towards a computational imaging 
pipeline for stem cell differentiation analysis

● Need further research on better 
characterization of relationships between 
scaffold geometry and stem cell morphology 

● Big data driven computing can play a 
significant role in development of quantitative 
techniques to assist in regenerative medicine
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