Ontogeny of Transporter Function

Shiew-Mei Huang
Office of Clinical Pharmacology
Office of Translational Sciences
CDER/FDA
Prior Recommendations of a Pediatric Transporter Working Group

Human Ontogeny of Drug Transporters: Review and Recommendations of the Pediatric Transporter Working Group

KLR Brouwer1, LM Aleksunes2, B Brandys3, GP Giacoia4, G Knipp5, V Lukacova6, B Meibohm7, SK Nigam8, M Rieder9, and SN de Wildt10, on behalf of the Pediatric Transporter Working Group

Table 4 Recommendations

- Build multidisciplinary, international collaborative networks to facilitate collection and sharing of data on pediatric transporters, including expertise in preclinical studies (e.g., knockout and in vitro models), pediatrics, clinical pharmacology, pharmacogenomics, pharmacometrics, and pharmacovigilance

- Establish central (perhaps regional) tissue repositories where surgical and postmortem samples can be stored with clear guidelines for tissue collection and handling to preserve sample integrity

- Continue to support the training of scientists in pediatric clinical pharmacology with expertise in transporters, pharmacogenomics, pharmacometrics, and pharmacovigilance

- Increase the awareness of clinicians regarding the importance of transporters in pediatric drug disposition

- Identify examples relevant to pediatric pharmacotherapy where developmental differences in transporter expression or activity could translate into clinically relevant effects

- Work with professional groups to develop guidelines on how drug therapy may be altered due to variations in transporter expression or activity

- Identify selective and specific biomarkers for transporter activity in pediatric patients

- Investigate basic developmental mechanisms regulating transporter expression and activity in the different organs in pediatric health and disease

- Develop pediatric-relevant in vitro/in silico and systems biology models to predict transporter function in the context of overall drug disposition

Human Transporters

Clinical Pharmacology & Therapeutics

The International Transporter Consortium: Summarizing Advances in the Role of Transporters in Drug Development

Kathleen M. Giacomini, Aleksandra Galetin, Shiew Mei Huang

- Transporter of emerging clinical importance
- Clinical evaluation of transporter-mediated drug-drug interactions
- Disease associated changes in transporter expression and/or activity
- Novel methods and best practices (in vitro, in vivo, in silico and their integrated application) have been presented
- Knowledge gaps need to be addressed via collaborative efforts, such as ITC

Volume 104, Issue 5
Advances in Transporters
November 2018
Pages 766-771

Chu X et al. ITC Consortium, Clin Pharmacol Ther 2018

Giacomini, Galetin, Huang, Editorial, Clin Pharmacol Ther 2018
There appears to be no change with intestinal P-gp expression with age

Modified from Iain Gardner & Trevor Johnson, simcyp, CERTARA.
Ontogeny of Liver Transporters

Protein abundance

OCT1, OATP1B3 & P-gp - significantly lower in neonates & infants than adolescents & adults

Prasad et al., CPT 2016; 100: 362

Profile I
- Stable

Profile II
- Low to high

Profile III
- High to low

Profile IV
- Non-Linear

Mooij et al., DMD 2016; 44: 1005

Modified from: Iain Gardner & Trevor Johnson, simcyp, CERTARA.
Ontogeny of Renal Transporters

A comprehensive analysis of ontogeny of renal drug transporters: mRNA analyses, quantitative proteomics and localization

[Study Design: Analyzed 184 human postmortem kidney samples from newborns to adults]

Ontogeny of Renal Transporters

A comprehensive analysis of ontogeny of renal drug transporters: mRNA analyses, quantitative proteomics and localization

- The expression of most of 11 renal transporters characterized in this study increased with age during the earliest developmental periods (< 2 years old)
- Maturation patterns was transporter-dependent

→ Ontogeny of certain renal membrane transporters displayed an age-dependent pattern, suggesting that the clearance of exogenous and endogenous substrates for these kidney transporters are subject to transporter-specific age-related changes

PDUFA 6: Regulatory Decision Tools

Complex Innovative Trial Designs

Model-informed Drug Development (MIDD)

Biomarker Qualification

Real World Evidence

Benefit/Risk Assessment

Patient Voice
Model-Informed Drug Development: Current US Regulatory Practice and Future Considerations

Yaning Wang¹*, Hao Zhu¹, Rajanikanth Madabushi¹, Qi Liu¹, Shiew-Mei Huang¹ and Issam Zineh¹

Model-informed drug development (MIDD) refers to the application of a wide range of quantitative models in drug development to facilitate the decision-making process. MIDD was formally recognized in Prescription Drug User Fee Act (PDUFA) VI. There have been many regulatory applications of MIDD to address a variety of drug development and regulatory questions. These applications can be broadly classified into four categories: dose optimization, supportive evidence for efficacy, clinical trial design, and informing policy. Case studies, literature papers, and published regulatory documents are reviewed in this article to highlight some common features of these applications in each category. In addition to the further development and investment in these established domains of application, new technology, and areas, such as more mechanistic models, neural network models, and real-world data/evidence, are gaining attention, and more submissions and experiences are being accumulated to expand the application of model-based analysis to a wider scope.
PBPK Submissions to FDA/OCP: 2008-2017

254 submissions were reviewed by OCP including 94 NDAs, from 2008-2017. Each submission might have more than one area of application. For example, one submission may include one or more PBPK models to be used to support enzyme-, transporter-mediated DDI, as well as food effect.

Integrated Workflow in PBPK Modeling Consideration

Early Preclinical Phase
- **PBPK model development and guidance for data generation**
 - Physico-chemical: MW, LogP, pKa, cP_app
 - In vitro: Cl_int, P_app, solubility, f_o,p, B/P, f_o,cell
 - In vivo animal: Plasma PK, PKPD studies (plasma and target tissue concentrations)

Refine human prediction and associated uncertainty
- In vitro human: Active vs. passive uptake, Vmax & Km, Ki/C50, Kp, K_p,uu
- In vitro animal: Species difference in K_p,uu
- In vivo animal: Renal & biliary clearance, Tissue concentrations, PET/MSI imaging, knockout models
- Predict Human PK: Project plasma and tissue PK including uncertainties

Late Preclinical Phase
- Preclinical PBPK verification: Clearance IVIVC, \(V_{ss} \) prediction, Absorption simulation
- PKPD: Potency IVIVC, Preclinical PKPD modeling including target tissue

Early Clinical Phase
- Early Clinical PK data: Single and multiple ascending doses, intravenous dose, mass balance, CDE

Refined PBPK
- Focus on key PK parameters: Define transporter-metabolism interplay

Additional Data
- Tissue data: (dialysis, MSI, biopsy) or imaging (e.g., PET), PD and endogenous transporter DDI biomarkers

Further PK Data
- DDI studies, population PK, PK from genotyped subjects and in specific populations

Final PBPK Model
- Simulate unstudied DDIs, additional populations and DDIs in specific populations

Giacomini, Galetin, Huang, Clin Pharmacol ther November 2018
Adapted from Guo et al, Clin Pharmacol ther November 2018
Key parameters required to build a reliable PBPK model:
• Good system model
• Well characterized ADME of the drug
 - absorption kinetics (rate & extent)
 - distribution parameters (organ partitioning, prefusion vs. permeability limitations)
 - metabolism (in drug eliminating organs, such as the liver)
 - excretion (by the kidney & into the bile)

→ Microphysiological systems may help in obtaining quality key parameters; although quantitative translation is still sparse
March 14, 2012 Meeting for the Advisory Committee for Pharmaceutical Science and Clinical Pharmacology

[Question 1]: Should modeling and simulation methods be considered in all pediatric drug development programs?

[13 Yes]. The committee unanimously agreed that modeling and simulation methods should be considered in all pediatric drug development programs. However, the committee acknowledged that there are knowledge gaps and limitations regarding the application.....

[Question 4]: Should the routine use of PBPK in pediatric drug development, when possible, be recommended at the present time?

[7 Yes]. agreed that routine use of PBPK in pediatric drug development, when possible, should be recommended at the present time...would be beneficial in better anticipating and understanding the PK variability in the pediatric populations.....

[6 No]. Pediatric PBPK models still have significant knowledge gaps,...pharmacogenetic effects on drug metabolism/transport, ontogeny of transporters, etc.....

March 15, 2017 Meeting for the Advisory Committee for Pharmaceutical Science and Clinical Pharmacology

[Question 1]: What information should be included in a PBPK submission to the FDA to ensure adequacy of an analysis for its intended purpose? Should these recommendations be universal or should there be different recommendations depending on the purpose for which the PBPK submissions will be used (e.g., to inform clinical study planning vs. labeling or regulatory decision making). What are the principles or criteria that should be considered?

[Committee Discussion]: Many committee members discussed that flexibility was very important when considering the type of information that should be included in a PBPK submission and that it may be useful to present the timeline of the evolution of the model (data, assumptions, etc) with appropriate annotations to support the modeling and conclusions from the modeling....that special populations (e.g., pediatrics, elderly, patients with various organ dysfunction) should be considered and that the guiding principles should be the interpretation of the applications and the modeling should be in the context of the population being considered for the intended use.

[Committee Discussion]: ..Harmonization of the processes with regulatory bodies worldwide will be helpful

FDA Advisory committee meeting: https://www.fda.gov/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/AdvisoryCommitteeforPharmaceuticalScienceandClinicalPharmacology/ucm535520.htm
Regulatory Guidance Documents - PBPK & Pediatrics -

Physiologically Based Pharmacokinetic Analyses — Format and Content
Guidance for Industry

FDA, final, August 2018

General Clinical Pharmacology Considerations for Pediatric Studies for Drugs and Biological Products
Guidance for Industry

FDA, draft, December 2014

Guideline on the reporting of physiologically based pharmacokinetic (PBPK) modelling and simulation

EMA, final, December 2018

ICH E11(R1) guideline on clinical investigation of medicinal products in the pediatric population
Step 5

ICH, final, September 2017

FDA: https://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm064982.htm
EMA (Q/A): How should Ontogeny/Organ Maturation be implemented into Models

Figure 1 Developmental changes of renal glomerular filtration rate (GFR) measured by mannitol clearance. [6]

Figure 2 An integrated visualisation of in vivo CYP ontogeny for the major hepatic CYPs: CYP1A2 (black), CYP2A6 (gray), CYP2B6 and CYP2D6 (purple), CYP2C9 (green), CYP2C19 (red), CYP2E1 (gold), and CYP3A (blue). [2]

→ It is important to include maturation function(s) to describe paediatric pharmacokinetics. (November 2018)

Pediatric Drug-Drug Interactions - Barriers & Opportunities -

Case Study
-PBPK of Renally Cleared Drugs-

Physiologically-based pharmacokinetic (PBPK) modeling with integrated renal transporter ontogeny to simulate the systemic exposure of intravenously (IV) administered tazobactam, IV oseltamivir and oseltamivir carboxylate (OC) in children (0-18 years old)

Fig 1. Elimination pathway of tazobactam

Fig 2. Elimination pathway of oseltamivir

CL_R = renal clearance; CL_{biliary} = biliary clearance; GFR = glomerular filtration rate; OAT = organic anion transporter; MRP4 = multidrug resistance protein 4; CES1 = carboxyesterase 1; MDR1 = multidrug resistance protein 1

Kit Wun Kathy Cheung, Lei Zhang, Shiew-Mei Huang, Kathleen M. Giacomini, ASCPT annual meeting, March 2019, Washington DC
Case Study (2)
-PBPK of Renally Cleared Drugs-

Methods

Adult PBPK model (PK-Sim® v7.3)²

Scaling + transporter ontology

Pediatric PBPK model (PK-Sim® v7.3)

Simulation: Adult population

Model verification

Simulation: Pediatric cohorts

Ontogeny of OAT1/3, MDR1, CES1 and MRP4 integrated into pediatric PBPK model¹,³

Allometric scaling

\[CL_{ped} = CL_{adult} \times \left(\frac{\text{Weight}_{ped}}{\text{Weight}_{adult}} \right)^{0.75} \]

Protein expression (% Adult expression)

fraction CES1 adult expression

\[\frac{1 - 0.2}{1.10^{0.56} + x^{0.56}} \times x^{0.56} + 0.20 \]

MRP4: no differences in the gene expression from neonates to adults¹
Case Study (3)

- **PBPK of Renally Cleared Drugs**

Tazobactam

Simulated plasma tazobactam concentrations following 500mg x 60min infusion in adults

Pediatric PBPK model predicted tazobactam Cmax, AUC and CL adequately for 0-7 years old

- **0-3 month old**
 - CL = 1.47 L/hr
 - Present study = 1.7 L/hr (1.2-fold)
 - Allometry = 2.67 L/hr (1.8-fold)

- **3 months - 2 years old**
 - CL = 4.29 L/hr
 - Present study = 4.0 L/hr (1.1-fold)
 - Allometry = 4.89 L/hr (1.1-fold)

- **2-7 years old**
 - CL = 8.75 L/hr
 - Present study = 6.9 L/hr (1.3-fold)
 - Allometry = 6.92 L/hr (1.3-fold)

This study illustrates the utility of pediatric PBPK in simulating exposure of drugs that are actively renally secreted in pediatric patients.

Pediatric PBPK models complemented allometry by predicting the whole PK profile, rather than just the clearance.

Pediatric PBPK models incorporating transporter ontogeny data could enhance drug dosing in pediatric patients and decision-making in pediatric drug development.

Summary

• International collaborative efforts have improved the understanding of the role of transporter in drug PK, PD, and response and should continue
• Modeling and simulation is critical and should be used in pediatric drug development; harmonization of regulatory processes is critical in the successful application
• Understanding of drug disposition and drug metabolism/transport and their interplay continue to be critical in the application of PBPK
• Knowledge gaps remain (e.g., system parameters in PBPK) and will continue to require collaborative work
Acknowledgement

• Gilbert Burckart
• Edwin Chow
• Kit Wun Kathy Cheung*
• Aleksandra Galetin
• Bianca D. van Groen*
• Kathy Giacomini
• Yaning Wang
• Saskia de Wildt
• Yuching Yang
• Lei Zhang
• Xinyuan (Susie) Zhang
• Issam Zineh

• Iain Gardner
• Trevor Johnson

*ORISE and MCMi