Ontogeny and Phase II Metabolism of Drugs

Stephan Schmidt, BPharm, PhD, FCP

Certara Professor Associate Professor & Associate Director CPSP Department of Pharmaceutics University of Florida

Disclaimer

- I am a consultant to pharmaceutical industry
- I like applied & interdisciplinary research
- I am presenting on behalf of an interinstitutional and interdisciplinary research team

Thank You To The Research Team

Bioinformatics & Computational Biology

Roche Postdoc Fellowship funded project (2017/2019)

Knowledge Gaps

Phase II metabolism: Conjugation reactions (**glucuronidation**, methylation, sulphation, acetylation, gluthathione conjugation, glycine conjugation)

UGT1A and 2B isoforms = key determinants of pharmacokinetics, efficacy and safety of many pediatric drugs

□ Rapid and continuous differentiation and maturation of metabolic functions → Limited knowledge

?

Ontogeny pattern of hepatic UGTs using multiple probe substrates

Differences in maturation of activity between UGT isoforms

Marked age-related differences in activity across UGT isoforms

Age-independent factors affecting UGT activity efficiency

Goals For This Presentation

- 1. Outline **experimental challenges** of automated **UGT** phenotyping **assays**
- 2. Discuss **UGT ontogeny** patterns of major UGT isoforms
- Discuss impact of age, sex, and ethnicity on UGT activity
- 4. Provide a case example for the dynamic interplay between **phase I** and **II metabolism**, **gene-drug interactions**, and **drug-drug interactions**

Goals For This Presentation

- 1. Outline **experimental challenges** of automated **UGT** phenotyping **assays**
- 2. Discuss UGT ontogeny patterns of major UGT isoforms
- 3. Discuss impact of age, sex, and ethnicity on UGT activity
- 4. Provide a case example for the dynamic interplay between phase I and II metabolism, gene-drug interactions, and drug-drug interactions

Challenges of UGT Phenotyping Assays

□ Lack of standardized experimental conditions of UGT assays between laboratories, which hinders the comparison of UGT activity across studies

- Pre-treatment of human liver microsomes (HLM) with detergents / pore-forming peptides (alamethicin)
- Buffer components (i.e., MgCl₂)
- Co-substrates (i.e., UDPGA, saccharolactone)
- Bovine serum albumin (BSA) supplementation

Limited or not available UGT-isoform inhibitors

Small number of positive control compounds as functional markers of UGT activity

- Good enzyme selectivity: β-estradiol (UGT1A1) trifluoperazine, (UGT1A4), 5hydroxytryptophol (UGT1A6), propofol (UGT1A9) and zidovudine (UGT2B7)
- Less selective compounds: gemfibrozil (UGT2B4/2B7), oxazepam (UGT2B15 (S), and 1A9, 2B7 (R)) and chenodeoxycholic acid (UGT1A3> 1A1, 2B7)

Optimization of UGT Profiling Assay Conditions

 UGT1A1: β-Estradiol (3-gluc) UGT1A3: Chenodeoxycholic acid UGT1A4: Trifluoperazine Optimized **10 UGT** UGT1A6: 5-Hydroxtryptophol incubation probe UGT1A9: Propofol conditions substrates Incubation buffer UGT2B4/2B7: Gemfibrozil • Potassium phosphate UGT2B7: Zidovudine o Tris-HCl UGT2B10: Amitriptyline Human Buffer component liver UGT2B15: Oxazepam (mixture) • MgCl₂ (0-10 mM) microsome UGT2B17: Testosterone S Co-substrate o **UDPGA** (1-25 mM) BSA (0-2 % w/v) 150-donor pooled HLM ○ 1 mg/mL Mixed gender (75 male/75 female) **Optimal experimental conditions to** simultaneously characterize the hepatic UGT activity in HLM

Incubation Buffer Composition

□ MgCl₂: 0, 1, 2, 5, 8 and 10 mM

Potassium phosphate (black bar) vs. Tris-HCl buffer (grey bar) 0.1 M, pH 7.4

□ Rate obtained with 10 mM MgCl₂ and Tris-HCl buffer defined as 100% (red bar)

^{*} p < 0.05, ** p < 0.01, p < 0.001

Enhanced activity of UGT1A3, 1A4, 1A9 and 2B4/7 by 50 to 87% with Tris-HCl buffer and 10 mM MgCl₂

Better reproducibility using Tris-HCl (89% of CV<20%) vs Phosphate buffer (>50% of CV% <20%)</p>

Co-Substrate Dependency

UDPGA: 1, 2.5, 3.75, 5, 8, 12 and 25 mM

- Hyperbolic or sigmoidal Michaelis-Menten kinetics: >60% of maximal activity at 5 mM UDPGA
- ➤ Substrate inhibition kinetic → Decreased glucuronide formation rate above 5 mM UDPGA
- Optimal UDPGA concentration of 5 mM

Substrate- and Enzyme-Specific Effects of BSA

BSA: 0, 0.1, 0.2, 0.5, 1, 1.5 and 2 % w/v

Total rate obtained in the absence of BSA defined as 100% (black bar)

Protein binding measured via high-throughput equilibrium dialysis (red circle)

Total activity: a more suitable tool to characterize metabolically stable new drug candidates, when the effect of BSA binding and the identity of UGTs had not been determined

Goals For This Presentation

- 1. Outline experimental challenges of automated UGT phenotyping assays
- 2. Discuss **UGT ontogeny** patterns of major UGT isoforms
- 3. Discuss impact of age, sex, and ethnicity on UGT activity
- 4. Provide a case example for the dynamic interplay between phase I and II metabolism, gene-drug interactions, and drug-drug interactions

Characterization of Hepatic UGT Ontogeny

- 1. Define the **ontogeny** profile of major human **hepatic UGT isoforms** based on microsomal glucuronidation activity using multiple selective substrates and matched HLM samples
- 2. Establish UGT protein expression activity correlation using matched HLM samples

Manuscript under review with DMD

Co-Regulation Between UGT Isoforms

Ontogeny of UGT1A1, 1A4, 2B7, 2B10, and 2B15 Established Using Multiple Selective Substrates

Rapid Ontogeny of UGT Isoforms

Badée *et al.,* 2019, Clin Pharmackinet, 58(2):189-211 Badée *et al.,* under review with Drug Metabolism and Disposition

Goals For This Presentation

- 1. Outline experimental challenges of automated UGT phenotyping assays
- 2. Discuss UGT ontogeny patterns of major UGT isoforms
- Discuss impact of age, sex, and ethnicity on UGT activity
- 4. Provide a case example for the dynamic interplay between phase I and II metabolism, gene-drug interactions, and drug-drug interactions

Evidence of Increased Activity with Age For UGT1A4, 1A6,1A9/2B7

* *p* < 0.05, ** *p* < 0.01, *** *p* < 0.001

- 2.5-fold change in UGT1A4 activity (older children-infants)
- 2.7-fold change in UGT1A6 activity (adults-infants)
- 4.6-fold change in UGT1A9/2B7 activity (neonates-infants)

But Not For UGT1A3 and 2B7

* *p* < 0.05, ** *p* < 0.01

- > Maximum activity reached in children
- Decreased activity in adults and elderly

No Sex or Ethnicity-Related Effects

Goals For This Presentation

- 1. Outline experimental challenges of automated UGT phenotyping assays
- 2. Discuss UGT ontogeny patterns of major UGT isoforms
- 3. Discuss impact of age, sex, and ethnicity on UGT activity
- 4. Provide a case example for the dynamic interplay between **phase I** and **II metabolism**, **gene-drug interactions**, and **drug-drug interactions**

Interplay Between Phase I and Phase II Metabolism: Oxycodone Case Example

Getting closer:

Let's Integrate To Predict – What If?

Zhao et al. (2011) Clin Pharmacol Ther 89: 259-67

What If - We Have GDIs?

- CYP2D6 PMs convert little to no Oxycodone to Oxymorphone.
- > CYP2D6 EMs and UMs show no difference in Oxycodone- but in Oxymorphone exposure.
- The extent of the difference in oxymorphone exposure is primarily driven by the UGT2B7 genotype. It is largest (~4-fold) for CYP2D6 UMs UGT2B7 PMs.

What If – We Have GDIs & DDIs?

Oxycodone AUC for DDI and CYP2D6 / UGT2B7 phenotypes

Oxymorphone AUC for DDI and CYP2D6 / UGT2B7 phenotypes

- **CYP3A4**-mediated DDIs have the biggest impact on Oxycodone and Oxymorphone exposure.
- CYP3A4 inhibition by strong CYP3A4 inhibitors (e.g. Ketoconazole) results in increased oxycodone and oxymorphone exposure. The increase in oxymorphone exposure is largest (~7-fold) for CYP2D6 UMs UGT2B7 PMs when co-administered with Ketoconazole.
- CYP3A4 induction (by e.g. Rifampin) results in decreased oxycodone and oxymorphone exposure (~6-fold).

de Miranda Silva et al. manuscript in preparation Sponsored by the Florida High Tech Council

Case Study Highlights

What is already known?

CYP2D6 is an important enzyme for the biotransformation of oxycodone.

What this research adds?

- **CYP2D6**, **CYP3A4**, and **UGT2B7** are important for oxycodone and oxymorphone metabolism.
- CYP2D6 PMs will have little to no oxymorphone exposure.
- CYP2D6 phenotypes determine the type of interaction, while its extent is determined by UGT2B7 polymorphisms and CYP3A4 activity.
- CYP2D6 UMs UGT2B7 PMs (rare in Caucasians) using CYP3A4 inhibitors will have the highest oxymorphone exposure → unlikely to be a problem.

Acknowledgements

University of Florida, FL, USA

Justine Badee Carolina de Miranda Silva Naveen Mangal Lawrence J Lesko Jacques Turgeon Veronique Michaud Valvanera Vozmediano

University of British Columbia, Ca

Abby C. Collier

Radmoud University, NI

Saskia N. de Wildt

F. Hoffmann-La Roche, Basel, Sw

Neil Parrott Stephen Fowler Nahong Qiu

Genentech, SF, USA

Ryan H. Takahashi William F. Forrest

Funding

Roche Postdoc Fellowship Program Florida High Tech Council

Stephan Schmidt:

sschmidt@cop.ufl.edu Office: 407-313-7012 Cell: 352-408-2833