

Modeling and Simulation using Pediatric Ontogeny Information

Dr. Stefan Willmann

Employee of Bayer AG

2019-05-16

FDA/MCERSI Pediatric Ontogeny Workshop Natcher Conference Center, Bethesda, MD

PBPK modeling in adults and translation to children

Building blocks of a PBPK model for children

	Drug properties	Organism properties	Study protocol and formulation properties
	Physicochemical properties • Lipophilicity • Molecular weight	Age-dependent changes in anatomy &	Modified formulations (e.g. minitablets, syrup)
	• pKa/pKb	physiology	Adjusted administration protocol (e.g. mg/kg dosing)
	drug-biology	Different special events	

2 Bayer AG /// Modeling and Simulation using Pediatric Ontogeny Information /// May 2019 /// Stefan Willmann

Bridging from adults to children - Workflow

Step 1:

Development and verification of a PBPK model for adults

Step 2:

Translation of the adult PBPK model to children using prior physiological information about growth and maturation of relevant processes

Step 3:

Prediction of pharmacokinetics in children by means of simulations of virtual pediatric trials

Step 4:

3

Support of clinical decision process by evaluating adequate dosing, sampling or cohort size

Modified from Edginton et al., Clin. Pharmacokin. (2006)

Quantitative ontogeny information is established for many CYPs, some UGTs and GFR

BAYER ER

4

Miyagi, drug met. and disp. (2)

Table II	Estimated	ano-donondont	onzymo	activity	as a	fraction	of ac	tult	valuosa
Table II.	Loumateu	age-dependent	enzyme	activity	as a	naction	UI au	Juit	values

Fraction of adult activity						
CYP3A4	CYP1A2	CYP2E1	UGT2B7	UGT1A6		
0.1	0.02	0.1	0.015	0.015		
0.2	0.05	0.21	0.05	0.1		
0.24	0.1	0.32	0.064	0.11		
0.5	0.2	0.4	0.1	0.16		
0.7	0.25	0.46	0.3	0.25		
1.1	0.29	0.46	0.7	0.36		
1.3 (1–3y)	0.35	1	1	0.5		
1	1 (8y)	1	1	1		
based on in vitro and i	n vivo clearance data	gathered from the liter	ature from children of a	all ages.		
ne P450; UGT = uridine	e diphosphate glucuro	nosyltransferase.		-		
	0.1 0.2 0.24 0.5 0.7 1.1 1.3 (1–3y) 1 based on <i>in vitro</i> and <i>i</i> ne P450; UGT = uridine	CYP3A4 CYP1A2 0.1 0.02 0.2 0.05 0.24 0.1 0.5 0.2 0.7 0.25 1.1 0.29 1.3 (1-3y) 0.35 1 1 (8y) based on <i>in vitro</i> and <i>in vivo</i> clearance data ne P450; UGT = uridine diphosphate glucuro	Praction of adult activity CYP3A4 CYP1A2 CYP2E1 0.1 0.02 0.1 0.2 0.05 0.21 0.24 0.1 0.32 0.5 0.2 0.4 0.7 0.25 0.46 1.1 0.29 0.46 1.3 (1-3y) 0.35 1 1 1 (8y) 1 based on <i>in vitro</i> and <i>in vivo</i> clearance data gathered from the liter ne P450; UGT = uridine diphosphate glucuronosyltransferase.	Praction of adult activity CYP3A4 CYP1A2 CYP2E1 UGT2B7 0.1 0.02 0.1 0.015 0.2 0.05 0.21 0.05 0.24 0.1 0.32 0.064 0.5 0.2 0.4 0.1 0.7 0.25 0.46 0.3 1.1 0.29 0.46 0.7 1.3 (1-3y) 0.35 1 1 1 1 (8y) 1 1 based on <i>in vitro</i> and <i>in vivo</i> clearance data gathered from the literature from children of a the P450; UGT = uridine diphosphate glucuronosyltransferase. Fraction of a the part of the literature from children of a the P450; UGT = uridine diphosphate glucuronosyltransferase.		

Edginton et al., Clin. Pharm. (2008)

Figure 2. An integrated visualization of in vivo CYP ontogeny for the major hepatic CYPs: (A) CYP1A2 (black), (B) CYP2A6 (gray), (C) CYP2B6, CYP2D6 (purple), (D) CYP2C9 (green), (E) CYP2C19 (red), (F) CYP2E1 (gold), and (G) CYP3A (blue).

Upreti et al, PediatricPharmacology (2016)

Numerous examples of PBPK models for children have been published in recent years

* according to PUBMED-search performed 01/2019 for "PBPK" AND ("children" OR "pediatric)", including toxicokinetic/environmental health models, excluding review articles

Concept to use PBPK for the description of PK in children using (among other prior physiological knowledge) ontogeny data is proven

BUT:

- the majority of published articles deal with labelled drug thats are known for quite some time and are partially retrospective
- for these compounds, the required information in particular mass-balance information and ontogeny data of the relevant elimination processes – is available
- for typical drug development candidates, less information is available

Prospective evaluation of PBPK predictions with data observed during clinical studies in children confirms predictive power

BAYER

PBPK modeling in adults and translation to children

Building blocks of a PBPK model for children

	Drug properties	Organism properties	Study protocol and formulation properties
		Monte Monte	
	 Physicochemical properties Lipophilicity Molecular weight pKa/pKb 	Age-dependent changes in anatomy &	Modified formulations (e.g. minitablets, syrup)
		physiology	Adjusted administration protocol
	Resulting age-depe	(e.g. mg/kg dosing)	
	drug-biology	interaction	Different special events

Bayer AG /// Modeling and Simulation using Pediatric Ontogeny Information /// May 2019 /// Stefan Willmann

Novel drug modalities pose new challenges to pediatric drug development

Increasing number of "non-classical small molecules" are developed including large proteins (e.g. antibodies), antisense-oligonucleotides, small interfering RNA, vector-based gene therapies,

Fig. 1 | Novel FDA approvals since 1993. Annual numbers of new molecular entities (NMEs) and biologics license applications (BLAs) approved by the Center for Drug Evaluation and Research (CDER). See Table 1 for new

approvals in 2018. Approvals of products such as vaccines by the Center for Biologics Evaluation and Research (CBER) are not included in this drug count (see Table 2). Source: Drugs@FDA.

Source:Nature Reviews Drug Discovery Vol. 18, February 2019

BAYER

Physiologically-based PK/PD modelling of therapeutic proteins

Mechanisms/processes relevant for therapeutic proteins

- // subcutaneous or intramuscular absorption
- // extravasation and lymph flow
- // target mediated disposition
- // lysosomal proteolysis and recycling by FcRn
- // immunogenicity

Vascular endothelial cells Figure adapted from Lobo et al. (2004). J. Pharm. Sci, 93(11), 2645

Maturation information for relevant processes is sparse

although age-dependence of many relevant physiological parameters and processes have been reviewed recently*, it is currently difficult to fully define *a-priori* an age-dependent parameterization of PBPK models for therapeutic proteins.

AGE?

// assessment of performance of a generic antibody PBPK model performance is currently ongoing

* Malik & Edginton, Expert Opin. Drug Metab. Toxicol., 14, 585-599 (2018)

Open-Systems-Pharmacology.org

Open Systems Pharmacology Suite

PK-Sim®, MoBi® & toolboxes now open source freeware under GNU Public License v2.0

- Fully transparent open source development
- Open development of scientific content and qualification approaches
- Repositories for open PBPK and Systems
 Pharmacology models

Pediatric Ontogeny Qualification

Qualification and publication of PK-Sim® Ontogeny database

// To qualify OSP software content, *in vivo* probe substances are applied to continuously evaluate predictive performance

1. Open Systems Pharmacology Suite (OSPS)

OSPS is a tool for PBPK modelling and simulation of drugs in laboratory animals and humans. PK-Sim and MoBi are part of the Open Systems Pharmacology Suite (OSPS) [1]. Simulations were carried out on a validated computerized system. PK-Sim⁶ is based on a generic PBPKmodel with 18 organs and tissues. Represented organs/tissues include arterial and venous blood, adipose tissue (separable adipose, excluding yellow marrow), brain, lung, bone (including yellow marrow), gonads, heart, kidneys, large intestine, liver, muscle, portal vein, pancreas, skin, small intestine, spleen and stomach, as shown in Figure 1.

Each organ consists of four sub-compartments namely the plasma, red blood cells (which together build the vascular space), interstitial space, and cellular space. Distribution between the plasma and red blood cells as well as between the interstitial and cellular compartments can be permeability-limited. In the brain, the permeation barrier is located between the vascular and the interstitial space. PK-Sim® estimates model parameters (intestinal permeability [2], organ partition coefficients [3,4], and permeabilities) from physico-chemical properties of compounds (molecular weight, pKa, ace/base properties) and the composition of each tissue compartment (lipids, water and proteins). Partition coefficients can be calculated using a variety of methods available in PK-Sim®, for example the internal PK-Sim® method [3,4] or that of Rodgers and Rowland [5-7].

Physiological databases included in the software incorporate the dependencies of organ weights, organ blood flows and gastrointestinal parameters (gastrointestinal length, radius of each section, intestinal surface area [[2]) with the user-defined body weight and height of the individual [8]. Thereby, PK Sim[®] allows generating realistic virtual populations. For a detailed description of the PBPK model structure implemented in PK Sim[®], see Willmann et al. [2,4,8,9] or the Open Systems Pharmacology (OSP) Suite homepage (https://github.com/Open-Systems-Pharmacology).

www.open-systems-pharmacology.org

3. CYP2C8 enzyme ontogeny qualification results

Cytochrome P450 2C8 (CYP2C8) is an active isoform of drug metabolizing enzymes in the human liver, which catalyzes the metabolism of several drugs on the market. With fractions metabolized of 72% and 85% respectively, montelukast and paclitaxel were the ideal candidates for qualifying the applied CYP2C8 enzyme ontogeny for the application of pediatric translation of adult PBPK.

www.open-systems-pharmacology.org

4.1.5 Reference

[1] Knorr B, Holland S, Rogers JD, Nguyen HH, Reiss TF. Montelukast adult (10-mg filmcoated tablet) and pediatric (5-mg chewable tablet) dose selections. J Allergy Clin Immunol. 2000 Sep;106(3 Suppl):S171-8.

[2] <u>Zhao JJ, Rogers JD, Holland SD, Larson P, Amin RD, Haesen R, Freeman A, Seiberling M, Merz M, Cheng H. Pharmacokinetics and bioavailability of montelukast sodium (MK-0476) in healthy young and elderly volunteers.Biopharm Drug Dispos. 1997 Dec;18(9):769-77.</u>

[3] <u>Fey C, Thyroff-Friesinger U, Jones S. Bioequivalence of two formulations of montelukast</u> sodium 4 mg oral granules in healthy adults. Clin Transl Allergy. 2014 Sep 18;4:29. doi: 10.1186/2045-7022-4-29. eCollection 2014.

[4] <u>Cheng H, Leff JA, Amin R, Gertz BJ, De Smet M, Noonan N, Rogers JD, Malbecq W,</u> <u>Meisner D, Somers G. Pharmacokinetics, bioavailability, and safety of montelukast sodium</u> (MK-0476) in healthy males and females. Pharm Res. 1996 Mar;13(3):445-8.

[5] <u>Friesen CA, Kearns GL, Andre L, Neustrom M, Roberts CC, Abdel-Rahman SM. Clinical efficacy and pharmacokinetics of montelukast in dyspeptic children with duodenal eosinophilia. J Pediatr Gastroenterol Nutr. 2004 Mar;38(3):343-51.</u>

[6] Kearns GL, Lu S, Maganti L, Li XS, Migoya E, Ahmed T, Knorr B, Reiss TF. Pharmacokinetics and safety of montelukast oral granules in children 1 to 3 months of age with bronchiolitis. J Clin Pharmacol. 2008 Apr;48(4):502-11. doi: 10.1177/0091270008314251. Epub 2008 Feb 22.

[7] <u>Knorr B, Nguyen HH, Kearns GL, Villaran C, Boza ML, Reiss TF, Rogers JD, Zhang J, Larson P, Spielberg S. Montelukast dose selection in children ages 2 to 5 years: comparison of population pharmacokinetics between children and adults. J Clin Pharmacol. 2001</u>

www.open-systems-pharmacology.org

Summary and Conclusions

Present state of knowledge of ontogeny

- Numerous papers have been published containing ontogeny information (-> detailed discussion in the following session)
- Workflows and processes for automated qualification of software content including pediatric ontogeny functions - are under development (publishing in June 2019)

Adequacy of knowledge of ontogeny of specific systems

- For many processes relevant for small molecules sufficient ontogeny data and information is available and integrated into PBPK modelling platforms
- ? For processes relevant for novel (biologic) drug modalities ontogeny information is widely lacking

Thank you!

Ibrahim Ince Sebastian Frechen André Dallmann Christoph Niederalt Juri Solodenko Kristin Menke Jan Schlender Rolf Burghaus Jörg Lippert

