In Vitro Tools to Risk Assess the Likelihood of a Food/Vehicle Effect in Pediatric Populations

Sandra Klein, PhD
University of Greifswald, Germany
Oral bioavailability

Drug solubility & dissolution rate in the upper GI tract

- physicochemical properties of the drug
- formulation properties
- physiological conditions in the upper GI tract at the time of dosing

subject to food effects

⇒ benefit of increased bioavailability
⇒ risk of
 - reduced efficacy
 - increased toxicity
Food effects in pediatric patients?

Dosing scenarios

• medication is administered after a meal (e.g. breakfast)
• unpleasant taste / difficulties in swallowing:

⇒ powder, tablet bits, sprinkles are admixed with soft food or fluids before administration
Food effects in pediatric patients?

Co-administration with a meal or modification of the dosage form...

• can affect physical / chemical stability of the drug / formulation
Case example: Enteric coated pellets

“In vitro stability, potency, and dissolution of duloxetine enteric-coated pellets after exposure to apple sauce, apple juice, and chocolate pudding”

- exposure of the pellets to the different foods
 - potency and impurities
 - dissolution

- enteric coating of duloxetine pellets was not negatively affected by mixing with apple sauce or apple juice

- exposing the pellets to chocolate pudding damaged the coating

Apple juice (25 °C): pH 3,5
Apple sauce (25 °C): pH 3,7
Vanilla pudding (25 °C): pH 6,5

K.A. Wells et al., Clinical Therapeutics 2008, 30 (7): 1300-1308
Food effects in pediatric patients?

Co-administration with a meal or modification of the dosage form...

- can affect physical / chemical stability of the drug
 ⇒ stability studies

- can alter the clinical performance of a drug by changing its bioavailability
 ⇒ how can we predict that?
Biorelevant *in vitro* dissolution methods

Biorelevant dissolution media

- address composition and properties of intraluminal fluids after fasted and fed dosing

Further parameters of importance

- gastric emptying time, small intestinal transit time
- GI motility and pressures

Advanced dissolution models

- dynamic gastric model, stress test device, ...
- multicompartmental models, e.g. USP 3/4, transfer model, gastroduodenal model, TIM-1...
Biorelevant *in vitro* dissolution methods

- physiologically based *in vitro* dissolution models can be helpful in establishing an IVIVC in many cases, however ...
Biorelevant *in vitro* methods for children

What is required for the test design?

- key parameters for *in vivo* drug release
 - physiological parameters
 - → fluid volume & composition in the GI sections
 - → residence times / GI passage
 - dosing conditions / manipulation
 - → co-administered food/fluid volumes & properties
 - → clinical/real dosing conditions?
- application of adult models will not work
- an universal pediatric approach is unlikely
⇒ there is need for appropriate test designs!
A possible starting point
Pediatric vs. adult GI physiology

⇒ the biggest differences are found in preterms and neonates

- gastric pH
- gastric emptying
- gastric acid secretion
- stomach capacity
- small intestinal pH
- small intestinal transit time
- production of digestive enzymes
- pancreatic secretion
- bile secretion
Fasted gastric fluid volumes and pH

Typical trends in healthy patients

Gastric fluid volume

<table>
<thead>
<tr>
<th></th>
<th>Newborns</th>
<th>Infants</th>
<th>Pre-school children</th>
<th>Adults</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fasted gastric fluid volume [mL]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>10</td>
<td>20</td>
<td>50</td>
</tr>
</tbody>
</table>

Fasted gastric pH

<table>
<thead>
<tr>
<th></th>
<th>Newborns</th>
<th>Infants</th>
<th>Pre-school children</th>
<th>Adults</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fasted gastric pH</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>

E. Kersten, S. Klein, AAPS Annual Meeting, San Antonio, USA, 2013 (Poster)
Current practices of manipulating medicines

Occurrences of different types of soft foods/dinks appearing on administration instructions for pediatric medicines (SmPCs and PILs)

- Water: 6 occurrences
- Infant formula: 5 occurrences
- Apple juice: 4 occurrences
- Milk: 4 occurrences
- Orange juice: 3 occurrences
- Juice: 2 occurrences
- Tomato juice: 2 occurrences
- Ora-sweet SF®: 2 occurrences
- Grapefruit juice: 2 occurrences
- Grape juice: 2 occurrences
- Cranberry juice: 2 occurrences
- Ora-Plus®: 2 occurrences
- Milk shake: 2 occurrences
- Breast milk: 2 occurrences
- Soy milk: 2 occurrences
- Soy formula: 2 occurrences
- Condensed milk: 2 occurrences
- Dietary supplements: 2 occurrences
- Corn syrup: 2 occurrences
- Caramel topping: 2 occurrences
- Chocolate syrup: 2 occurrences
- Light brown sugar solution: 2 occurrences
- Ginger ale: 2 occurrences
- Lemonade: 2 occurrences
- Cherry syrup (Humco®): 2 occurrences
Typical breakfasts ingested by infants (1yr)

Preparation & physicochemical characterization

A

B

C

06/06/2016 Sandra Klein, University of Greifswald
Food / fluid properties

Can affect ...
- drug / formulation stability
- drug solubility
- dissolution rate / drug release rate

 Might affect ...
- gastric emptying

Most relevant physicochemical characteristics
- pH
- buffer capacity
- osmolality
- surface tension
- viscosity

Type of food? Portion size / volume?
Relevant physicochemical characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Temp.</th>
<th>Fluids</th>
<th>Suspension vehicles</th>
<th>Soft foods</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Water</td>
<td>Apple sauce</td>
<td>Vanilla pudding</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Apple juice</td>
<td>Grape juice</td>
<td>Orange juice</td>
</tr>
<tr>
<td>pH-value (1)</td>
<td>25°C</td>
<td>7,31</td>
<td>3,47</td>
<td>3,45</td>
</tr>
<tr>
<td></td>
<td>37°C</td>
<td>7,89</td>
<td>3,49</td>
<td>3,43</td>
</tr>
<tr>
<td>Buffer capacity [mEq/pH/L]</td>
<td>25°C</td>
<td>0,11</td>
<td>(0,00)</td>
<td>33,4</td>
</tr>
<tr>
<td></td>
<td>37°C</td>
<td>0,06</td>
<td>(0,0)</td>
<td>33,9</td>
</tr>
<tr>
<td>Osmolality [mOsmol/kg]</td>
<td></td>
<td>4</td>
<td>(1)</td>
<td>677</td>
</tr>
<tr>
<td>Surface tension [mN/m]</td>
<td>25°C</td>
<td>70,2</td>
<td>(0,36)</td>
<td>64,17</td>
</tr>
<tr>
<td></td>
<td>37°C</td>
<td>68,74</td>
<td>(0,46)</td>
<td>62,51</td>
</tr>
<tr>
<td>Viscosity [mPa*s]</td>
<td>25°C</td>
<td>0,91</td>
<td>(0,00)</td>
<td>1,26</td>
</tr>
<tr>
<td></td>
<td>37°C</td>
<td>0,72</td>
<td>(0,00)</td>
<td>0,96</td>
</tr>
</tbody>
</table>

† mean of n=18 calculated from measuring surface tension a set of 3 dilutions at concentrations above the critical micelle concentration (CMC) – see 5.2.4 for more details

‡ measured with the rotational viscometer (see figures 1-4 for viscosity profiles)

* to ensure complete pulp removal, orange juice was filtered through a 12 µm cellulose nitrate filter (Schleicher & Schuell, Dassel, Germany) using a vacuum filtration device before measuring viscosity

Sandra Klein, University of Greifswald

E. Kersten, A. Barry, S. Klein, DiePharmazie, 2016; 71 (3): 122-127(6)
Case example

Ibuprofen

- used in children of all age groups
- adults: BCS class 2 → pediatric BCS class?
- food-effect?

How can the drinking volumes, fluid and food properties affect *in vivo* dissolution in neonates and infants?
Test design – gastric dissolution

Resting gastric fluid pH
1.8; 2.5; 3.5; 4.0; 5.0; 7.0

Mini Paddle
200 mL, 75 rpm
Predictive test methods for newborns

Simulating drug release in the fasted stomach of a 3 kg newborn

<table>
<thead>
<tr>
<th></th>
<th>Furosemide</th>
<th>Ibuprofen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dosing recommendation</td>
<td>2 mg/kg</td>
<td>20 mg/kg</td>
</tr>
<tr>
<td>Test dose</td>
<td>6 mg</td>
<td>60 mg</td>
</tr>
</tbody>
</table>

Scenario 1

<table>
<thead>
<tr>
<th></th>
<th>Fluid volume available for dissolution</th>
<th>Dose:gastric volume ratio</th>
<th>Upscaled dose:volume ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5 mL residual gastric fluid + 25 mL co-ingested fluid</td>
<td>6 mg/30 mL</td>
<td>40 mg/200 mL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60 mg/30 mL</td>
<td>66.7 mg/200 mL</td>
</tr>
</tbody>
</table>
Ibuprofen – newborns

5 mL
pH 7.0
pH 5.0
pH 4.0
pH 3.5
pH 2.5
pH 1.8

60 mg + 25 mL water

60 mg + 25 mL formula milk

PREMATURE NEWBORNS, PRO PRE, PRO 1

Buffer capacity [mEq/pH/L]
Ibuprofen – newborns

Combining gastric and small intestinal compartment

- use of physiologically relevant test volumes
- transfer of gastric contents into the small intestine

Ibuprofen – newborns

5 mL
- pH 7.0
- pH 5.0
- pH 4.0
- pH 1.8

100 mL
- pH 7.0 → pH 6.8
- pH 5.0 → pH 6.8
- pH 4.0 → pH 6.8
- pH 1.8 → pH 6.8
Ibuprofen – infants

10 mL
pH 4.0
pH 3.5
pH 2.5
pH 1.8

Scenario 1 - 50 mL water

Scenario 3 - 300 mL water
Properties of co-administered fluid

<table>
<thead>
<tr>
<th>Fluid Type</th>
<th>pH</th>
<th>Buffer Capacity [mEq/pH/L]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apple juice</td>
<td>3.5</td>
<td>30</td>
</tr>
<tr>
<td>Apple spritzer (1:2)</td>
<td>3.5</td>
<td>30</td>
</tr>
<tr>
<td>Carrot juice</td>
<td>3.5</td>
<td>30</td>
</tr>
<tr>
<td>Grape juice</td>
<td>3.5</td>
<td>30</td>
</tr>
<tr>
<td>Grape juice spritzer (1:5)</td>
<td>3.5</td>
<td>30</td>
</tr>
<tr>
<td>Orange juice</td>
<td>3.5</td>
<td>30</td>
</tr>
<tr>
<td>Orange spritzer (1:2)</td>
<td>3.5</td>
<td>30</td>
</tr>
<tr>
<td>Whole milk (3.5%)</td>
<td>3.5</td>
<td>30</td>
</tr>
<tr>
<td>Cocoa</td>
<td>3.5</td>
<td>30</td>
</tr>
<tr>
<td>Vanilla milk</td>
<td>3.5</td>
<td>30</td>
</tr>
<tr>
<td>Formula milk (Beba 1)</td>
<td>3.5</td>
<td>30</td>
</tr>
</tbody>
</table>
Ibuprofen – infants

10 mL + 100 mg + 150 mL

- Whole milk (3.5%)
- Grape juice spritzer (1:5)

pH 4.0 + water
pH 3.5 + water
pH 2.5 + water
pH 1.8 + water

% dose dissolved

0 10 20 30 40 50 60 70 80 90 100

time [min]

0 5 10 15 20 25 30

% dose dissolved

0 10 20 30 40 50 60 70 80 90 100

time [min]
Ibuprofen – infants

Simulating postprandial gastric conditions in infants – ibuprofen (1 year)

- design & application of individual, but reproducible postprandial gastric media
 - carbohydrates
 - proteins
 - fat
 - pH
 - volume
Predicting food effects in children ...

- a safe dosing recommendation requires fundamental background information on drug/formulation, food/fluid properties, co-administered food/fluid portions and GI physiology

- with this information, it should be possible to design appropriate *in vitro* tools to risk assess the likelihood of a food/vehicle effect in pediatric populations

Current status

+ we have a lot of experience for adults

- both *in vitro* and *in vivo* test methods cannot simply be downscaled from adult designs
Predicting food effects in children ...

Where are the needs?

- new *in vitro* methods with pediatric relevance including apparatus, test settings and media
- appropriate *in vivo* screening methods to compare with

>a lot of gaps to fill on GI features of the pediatric population

> this is only possible with international collaboration and sufficient support

- modern and biopredictive pediatric *in vitro tools* will hopefully help to reduce the number of clinical studies required for releasing safe pediatric drug products to the market
Acknowledgements

Saskia Blank
Antonia Krüger
Frank Karkossa
Elisabeth Kersten

German Ministry of Economics and Technology (AZ V-630-F-157-2012/230)

European Paediatric Formulation Initiative

Biopharmaceutics Workstream
AAF - Modification of Dosage Forms Required for Children Workstream
Thank you

Prof. Dr. Sandra Klein
Ernst Moritz Arndt University Greifswald
Department of Pharmacy / Institute of Biopharmaceutics and Pharmaceutical Technology
Felix-Hausdorff-Strasse 3
17489 Greifswald, Germany

e-mail: Sandra.Klein@uni-greifswald.de

8th EuPFi Conference
„Formulating better medicines for children“
Lisbon, Portugal
September 21-22, 2016