

Heat Effects on Multi-Application Sunscreen Use: IVPT to Healthy Volunteers

Audra L. Stinchcomb, RPh, PhD Professor Department of Pharmaceutical Sciences

Disclaimer & Disclosure

- The views expressed in this presentation do not reflect the official policies of the U.S. Food and Drug Administration or the U.S. Department of Health and Human Services; nor does any mention of trade names, commercial practices, or organization imply endorsement by the United States Government. This study is not FDA funded.
- Chief Scientific Officer and Co-Founder of

A company developing and testing topical drug products

Acknowledgements

Lab Members

- Sagar Shukla, PharmD
- Sherin Thomas
- QingZhao Zhang
- Paige Zambrana
- Dana Hammell, M.S.
- Danielle Fox

Paige Zambrana PhD thesis project

Methods of Assessment of Bioavailability

IVPT

Microdialysis

Tape stripping

<section-header><section-header>

Pharmacodynamic assay (vasoconstriction)

Urine levels

7

UNIVERSITY of MARYLAND SCHOOL OF PHARMACY In-Line Diffusion Cells

1. Dermatome

2. Assemble setup

3. Record TEWL

4. Dose Product

Inverted HPLC vial

Positive displacement pipette

Multiple Dosing

- Oxybenzone permeation with multi-application use of sunscreens on
- 1) in vitro permeation of oxybenzone across excised human skin
- design an in vivo study, under harmonized conditions, to evaluate the pharmacokinetics of oxybenzone absorption in healthy human volunteers for two sunscreen lotion products each containing 6% oxybenzone

IVIVC: In Vitro In Vivo Correlation

- Value of IVIVC
 - Facilitate testing of drug candidates and optimization of formulation
 - Assist in quality control
 - Serve as a surrogate for bioequivalence studies, scale-up and postapproval changes
- \rightarrow Minimize/Reduce in vivo clinical studies

Influence of Heat

- Evaluate the effect of heat exposure
 - 37°C vs standard skin surface temperature of 32°C

1) **↑** Diffusivity of Drug from its Vehicle

Influence of Heat on Percutaneous Absorption

2) 个 Fluidity of Stratum Corneum Lipids

Very regular, Ordered structure Less tightly packed, Hydrocarbon tails Disordered.

https://biochemistry3rst.wordpress.com/tag/phosphodiate/

Influence of Heat on Percutaneous Absorption

3) **↑** Cutaneous Vasodilation

Study Design

Both arms will be performed for Lotion 1 and Lotion 2 IVPT carried out for 24 hours

IVPT Data: Lotion 1 Flux profile from human skin for Lotion 1 (mean ± SD) (3 replicates/donor)

6

12

Time (h)

18

24

1.5-

1.0-

0.5

0.0

0

Flux (μg/cm²h)

IVPT Data: Lotion 1

Formulation	Donor (human skin)	Heat Enhancement Ratio (Heat/No Heat)		^{**} p value (Heat vs No Heat)	
		J _{max}	Cum. Amt.	J _{max}	Cum. Amt.
Lotion 1	1a	2.10	2.05	0.0036	0.0036
	2a	2.22	2.20	0.0126	0.0140
	3	1.91	2.23	0.0353	0.0241
	4	2.54	2.56	0.0091	0.0019
	Mean (n=4 donors)	2.18	2.32	0.0413	0.0605

*Heat enhancement in Jmax and Cum. Amt. at 6 h was calculated **p values were obtained from unpaired t test for individual donors and paired t test for mean of four donors

IVPT Data: Lotion 2 Flux profile from human skin for Lotion 2 (mean ± SD) (3 replicates/donor)

IVPT Data: Lotion 2

Formulation	Donor (human skin)	Heat Enhancement Ratio (Heat/No Heat)		^{**} p value (Heat vs No Heat)	
		J _{max}	Cum. Amt.	J _{max}	Cum. Amt.
Lotion 2	1b	1.35	1.43	0.018	0.0082
	2b	1.79	1.97	0.0417	0.0227
	3	1.34	1.62	0.2545	0.1265
	4	1.10	1.36	0.5953	0.2131
	Mean (n=4 donors)	1.42	1.59	0.0934	0.0322

*Heat enhancement in Jmax and Cum. Amt. at 6 h was calculated

**p values were obtained from unpaired t test for individual donors and paired t test for mean of four donors

Flux profile comparison of Lotion 1 vs Lotion 2 for two human skin donors (mean ± SD)

Human Pharmacokinetic Study

- 12 h open-label, randomized, four-way crossover pharmacokinetic study in healthy human volunteers
- Harmonized to the previously mentioned IVPT parameters
- During heat application, skin temperature of 37 ± 2°C was achieved by placing a heating pad adhered to the underside of a 3D printed dome over the top of the volunteers' thighs
- Serum samples will be analyzed for oxybenzone using a validated LC-MS/MS method
- 2 mg/cm² application → 800 cm²

Design of Standardized Heat Dome

Setup during clinical trial heat procedure days

Record of average skin temperature recorded from four separate skin sensors placed on the thighs covering an area of 800 cm²

Serum Concentration vs Time Profile oxybenzone absorption under non-heated conditions for two healthy human volunteers

Goals

- Develop a streamlined testing method that is more clinically and environmentally harmonized for sunscreen UV filter safety levels
 - Extrapolate full body exposure data from 800 cm² thigh study
 - Make sure 37 degrees C or higher temp does not significantly influence the product's absorption
- Generate more accurate information as to the total permeation of oxybenzone in worst-case scenarios
- Show the difference that formulation makes advocating for final formulation testing for permeation
- Optimized in vitro study protocols may help to decrease the number of clinical trials required for UV filter product testing

Acknowledgments

<u>Co-PIs</u>

Dr. Hazem Hassan (UMB) now at FDA Dr. Elke Lipka (TSRL) 2R44AI129122-03

National Institute of Allergy and Infectious Diseases

U01FD004947

Dr. Annette L. Bunge Dr. Richard H. Guy Dr. Tom Franz

<u>Clinical Study Team</u>

Dr. Samer El-Kamary Dr. Wilbur Chen Dr. Jeff Fink Melissa Billington UMB GCRC nurses Clinical Study Participants

Current Lab Members

Contributors to the work presented:

- Sherin Thomas (Lidocaine, buprenorphine, diclofenac)
- Dana Hammell, MS (Lab Manager and Document Control)
- Dani Fox (Clinical Coordinator)
- Sagar Shukla (Lidocaine)
- Paige Zambrana (Sunscreens & glucose monitoring, fentanyl)
- Qingzhao Zhang (Metronidazole & rivastigmine)

Sunscreen Funding

 University of Maryland Baltimore, School of Pharmacy Mass Spectrometry Center (SOP1841-IQB2014), and the University of Maryland, Baltimore, Institute for Clinical & Translational Research (ICTR) Voucher Program

<u>U.S. FDA</u>

- Dr. Caroline Strasinger TDS Strength/Dose Study
- Dr. Sam Raney, OGD TDS Heat Effects & IVIVC
- Dr. Priyanka Ghosh, OGD TDS Heat Effects & IVIVC

FDA Funding

• NIPTE-U01-MD-2015 U01FD004275

FDA

- NIPTE-U01-MD-2016-003 + MCERSI
- U01FD004947
- U01FD004955

Disclaimer

The views expressed in this presentation do not reflect the official policies of the Department of Health and Human Services; nor does any mention of trade names, commercial practices, or organization imply endorsement by the United States Government.

This project has been approved by the UMB Institutional Review Board for human subject research