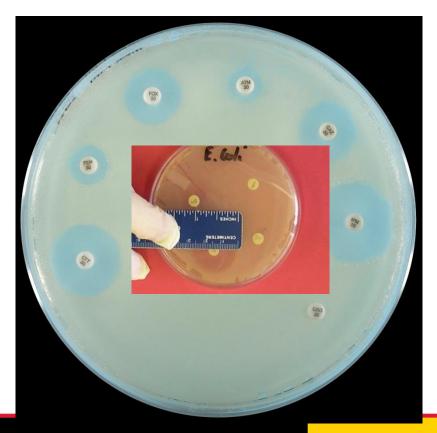


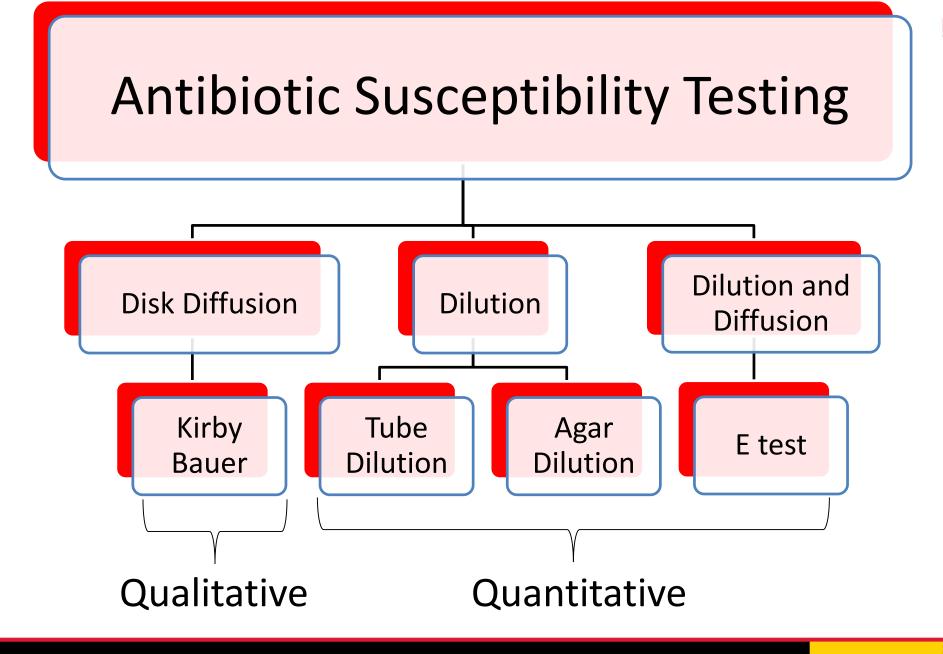
# The Nuts and Bolts of Antibiograms in Long-Term Care Facilities

J. Kristie Johnson, Ph.D., D(ABMM) Professor, Department of Pathology University of Maryland School of Medicine Director, Microbiology Laboratories University of Maryland Medical Center jkjohnson@som.umaryland.edu

#### March 6, 2018

#### Disclosures


- Applied BioCode -Research Grant
- Beckman Coulter-Speaker
- bioMérieux-Speaker
- M39 Working group member


#### Objectives

- Review core concepts of antibiotic susceptibility and cumulative antibiotic susceptibility data/antibiograms
- Identify best practices for developing and maintaining annual antibiograms in long-term care
- Define how cumulative susceptibility data/antibiograms can be used in surveillance programs.

### Antimicrobial Susceptibility Test

- Only performed on bacteria in which susceptibility to standardized treatment is not predictable.
  - Predictable
    - B-Streptococcus
  - Not-predictable
    - E. coli
- Antibiotics reported
  - Cascading antibiotics
  - Additional antibiotics fro MDROs
  - What methods
  - Breakpoints used





#### Terminology

- Sensitive
  - Based on the pharmaco-dynamics of an antimicrobial agent administered according to the normally recommended dosage and the organism causing an infection, the agent will most likely inhibit the organism in vivo.
- Intermediate (indeterminate)/Susceptible Dose Dependent
  - .....might inhibit the organism in vivo. /Use higher dose
  - •
- Resistant
  - .....will most likely not inhibit the organism in vivo.
- Non-Susceptible
  - .....Not enough data to know if it is likely to inhibit the organism in vivo.
- Epidemiological Cutoff Values
  - Determines the MIC of Wildtype and non-WT.

#### Where does the data come from?

- Microbiology AST instruments
- Microbiology LIS
- Electronic Health Records (EHR)
- Clinical decision support system (CDSS)

#### 3 Types of Cumulative AST Data Reports

Traditional Antibiogram
 Enhanced Antibiogram
 Local Level - A single facility
 Non-Traditional Antibiograms

 Combined Antibiograms
 Antimicrobial Resistance Surveillance Programs

#### What Is An Antibiogram?

 Presentation of cumulative antimicrobial susceptibility testing (AST) data from a single institution on an annual basis

Appendix E1. Cumulative Antimicrobial Susceptibility Report Example – Antimicrobial Agents Listed Alphabetically (Hypothetical Data)

Memorial Medical Center 1 January – 31 December 2012 Cumulative Antimicrobial Susceptibility Report\* Percent Susceptible

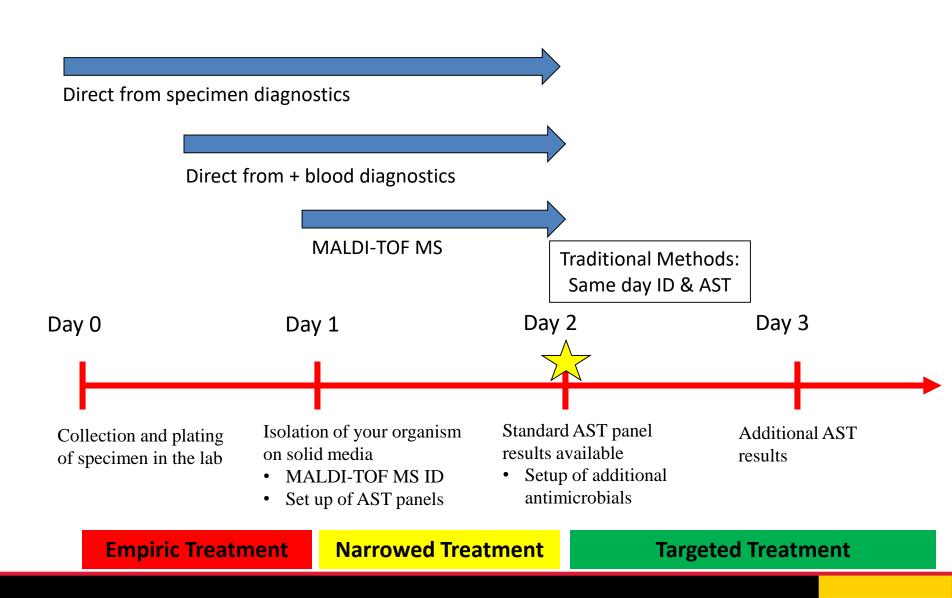
|                              |                | .,       |            |           | nt Suscep  |             |               | -cpuoli                     | ty respon  |           |                             |                                   |            |                            |
|------------------------------|----------------|----------|------------|-----------|------------|-------------|---------------|-----------------------------|------------|-----------|-----------------------------|-----------------------------------|------------|----------------------------|
| Gram-Negative Organisms      | No.<br>Strains | Amikacin | Ampicillin | Cefazolin | Cefotaxime | Ceftazidime | Ciprofloxacin | Nitrofurantoin <sup>†</sup> | Gentamicin | Meropenem | Piperacillin-<br>tazobactam | Trimethoprim-<br>sulfamethoxazole | Tobramycin |                            |
| Acinetobacter baumannii      | 32             | 80       | R          | R         | 34         | 52          | 51            | _‡                          | 60         | 80        | 46                          | 58                                | 59         |                            |
| Citrobacter freundii         | 49             | 100      | R          | R         | 72         | 67          | 90            | 78                          | 100        | 99        | 67                          | 67                                | 100        |                            |
| Enterobacter aerogenes       | 31             | 100      | R          | R         | 68         | 69          | 92            | 85                          | 91         | 99        | 74                          | 95                                | 91         |                            |
| Enterobacter cloacae         | 76             | 99       | R          | R         | 61         | 62          | 92            | 81                          | 90         | 99        | 77                          | 84                                | 90         |                            |
| Escherichia coli             | 1433           | 99       | 36         | 68        | 96         | 94          | 72            | 98                          | 91         | 99        | 51                          | 65                                | 92         |                            |
| Klebsiella pneumoniae        | 543            | 99       | R          | 72        | 91         | 92          | 84            | 74                          | 94         | 95        | 86                          | 81                                | 94         |                            |
| Morganella morganii          | 44             | 100      | R          | R         | 85         | 81          | 99            | R                           | 100        | 99        | 64                          | 75                                | 100        |                            |
| Proteus mirabilis            | 88             | 100      | 87         | 80        |            |             | " <b>n</b>    |                             | 11         |           | , (                         |                                   |            | I alter a still to see all |
| Pseudomonas aeruginosa       | 397            | 97       | R          | R         |            |             |               | OU                          | Πľ         | <b>Ie</b> |                             | JUI                               | mu         | lative antibiogram         |
| Salmonella spp.              | 32             | -        | 88         | -         |            |             |               |                             |            |           |                             |                                   |            |                            |
| Serratia marcescens          | 50             | 100      | R          | R         |            | <b>Je</b>   | ne            | ra                          | IV         |           | al                          | IS                                |            | ates from a facility       |
| Shigella spp.                | 33             | -        | 64         | -         |            |             |               |                             |            |           |                             |                                   |            | J                          |
| Stenotrophomonas maltophilia | 72             | R        | R          | R         | R          | 63          | 6             | R                           | R          | R         | -                           | 98                                | R          |                            |
|                              |                |          |            |           |            |             |               |                             |            |           |                             |                                   |            |                            |

\* The percent susceptible for each organism/antimicrobial combination was generated by including the first isolate of that organism encountered on a given patient.

<sup>†</sup> Nitrofurantoin data from testing urine isolates only.

<sup>‡</sup> (-) drug not tested or drug not indicated.

Abbreviations: No., number; R, intrinsic resistance.


# The Why? - Purpose of the Antibiogram

To help clinicians choose initial empiric therapy

- Many more applications
  - Dr. Kim Claeys presentation on February 6<sup>th</sup>
     discussed using the antibiogram for Antimicrobial
     Stewardship applications

#### **Importance & Reliance on Antibiograms Grow!**

#### **Courtesy of Trish Simner**



# Who is Responsible for Creating the Antibiogram?

- Traditionally the microbiology laboratory
  - Driven by access to the data from AST instruments or the LIS
- Shifting towards stronger collaborations with Antimicrobial Stewardship Programs
  - Automated EHR based antibiograms
- Should be a collaborative effort
  - Clinical microbiologists, pharmacists, physicians, IT specialists

#### Where Do You Start?

- M39-A4: Analysis and Presentation of Cumulative Antimicrobial Susceptibility Test Data; Approved Guideline-Fourth Edition
- M39-A5 currently being worked on. 2019-2020
  - A newly created section on LTC



Preparation of Cumulative Antibiogram Recommendations

- WHEN?-Analyze/present data at least annually
- Include only verified **final results**
- Include only species with ≥ 30 isolates
- Include diagnostic (not surveillance) isolates
- Include the 1<sup>st</sup> isolate/patient; no duplicate isolates
- Only include routinely tested antimicrobial agents
- Report only %S and do not include I%



#### The Cumulative Antibiogram Report

- Analyzes data from routine antimicrobial susceptibility tests performed in the clinical laboratory
- Separate report prepared for each healthcare facility
- Primarily used to guide empiric therapy
- Sometimes used to **monitor resistance** 
  - Changes in %S from year to year
- Highly impacted by
  - patient population served
  - culturing practices
    - If cultures only performed when patients fail therapy
  - Laboratory antimicrobial susceptibility testing and reporting policies
  - Temporal outbreaks

#### **Organism Specific Recommendations**

| Bug/Drug                                                              | Presentation of Data                                                                  |
|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Streptococcus pneumoniae and penicillin                               | List the %S using oral, meningitis and non-meningitis breakpoints                     |
| <i>Streptococcus pneumoniae</i> and cefotaxime, ceftriaxone, cefepime | List the %S using meningitis and nonmeningitis breakpoints                            |
| Viridans group streptococci and penicillin                            | List both the %S and %I                                                               |
| Staphylococcus aureus                                                 | List %S for all isolates and the methicillin-resistant <i>S. aureus</i> (MRSA) subset |
| E. coli, K. pneumoniae and P. mirabilis and cefazolin                 | List % S using urine and non-urine breakpoints                                        |



#### Stratification of Antibiograms

- Nursing site or site of care
   ICU, burn unit, ED, outpatient clinic
- Specimen type of infection site — Urine, blood
- Clinical service or patient population

- Surgical, pediatric, transplant, cancer



## Answers to Commonly Asked Questions

#### How do I Apply Intrinsic Resistance?

#### B1. Enterobacteriaceae

| Antimicrobial Agent<br>Organism                 | Ampicillin          | Amoxicillin-<br>clavulanate | Ampicillin-<br>sulbactam | Piperacillin | Ticarcillin  | Cephalosporins I:<br>Cefazolin, Cephalothin | Cephamycins:<br>Cefoxitin, Cefotetan | Cephalosporin II:<br>Cefuroxime | Imipenem | Tetracyclines | Tigecycline | Nitrofurantoin | Polymyxin B<br>Colistin | Aminoglycosides |
|-------------------------------------------------|---------------------|-----------------------------|--------------------------|--------------|--------------|---------------------------------------------|--------------------------------------|---------------------------------|----------|---------------|-------------|----------------|-------------------------|-----------------|
| Citrobacter freundii                            | R                   | R                           | R                        |              |              | R                                           | R                                    | R                               |          |               |             |                |                         |                 |
| Citrobacter koseri                              | R                   |                             |                          | R            | R            |                                             |                                      |                                 |          |               |             |                |                         |                 |
| Enterobacter cloacae complex <sup>a</sup>       | R                   | R                           | R                        |              |              | R                                           | R                                    | R                               |          |               |             |                |                         |                 |
| Escherichia coli                                | There is            | s no intrin                 | sic resista              | ance to β-   | lactams i    | n this orgai                                | nism.                                |                                 |          |               |             |                |                         |                 |
| Escherichia hermannii                           | R                   |                             |                          |              | R            |                                             |                                      |                                 |          |               |             |                |                         |                 |
| Hafnia alvei                                    | R                   | R                           | R                        |              |              | R                                           | R                                    |                                 |          |               |             |                |                         |                 |
| Klebsiella (formerly<br>Enterobacter) aerogenes | R                   | R                           | R                        |              |              | R                                           | R                                    | R                               |          |               |             |                |                         |                 |
| Klebsiella pneumoniae                           | R                   |                             |                          |              | R            |                                             |                                      |                                 |          |               |             |                |                         |                 |
| Morganella morganii                             | R                   | R                           |                          |              |              | R                                           |                                      | R                               | b        |               | R           | R              | R                       |                 |
| Proteus mirabilis                               | There is<br>organis |                             | sic resista              | ance to pe   | enicillins a | and cephalo                                 | osporins in                          | this                            | b        | R             | R           | R              | R                       |                 |
| Proteus penneri                                 | R                   |                             |                          |              |              | R                                           |                                      | R                               | b        | R             | R           | R              | R                       |                 |
| Proteus vulgaris                                | R                   |                             |                          |              |              | R                                           |                                      | R                               | b        | R             | R           | R              | R                       |                 |
| Providencia rettgeri                            | R                   | R                           |                          |              |              | R                                           |                                      |                                 | b        | R             | R           | R              | R                       |                 |
| Providencia stuartii                            | R                   | R                           |                          |              |              | R                                           |                                      |                                 | b        | R             | R           | R              | R                       | С               |

The most up-to-date Intrinsic Resistance tables are located in the current M100 document.

# What Do You Do With Susceptible Dose Dependent (SDD) Results?

- SDD: an interpretive category defined by a breakpoint that susceptibility of an isolate is dependent on the dosing regimen that is used in the patient
  - Cefepime and Enterobacteriaceae
  - Fluconazole and C. albicans, C. glabrata, C. parapsilosis, & C. tropicalis
  - New in 2019:
    - Daptomycin and *Enterococcus* spp
    - Ceftaroline and *Staphylococcus aureus*
  - Report both % S & %SDD either in the Table or as a footnote

|                       | Ν   | % S Cefepime    | %SDD<br>Cefepime |
|-----------------------|-----|-----------------|------------------|
| Escherichia coli      | 574 | 92ª             | 3                |
| Klebsiella pneumoniae | 132 | 84 <sup>b</sup> | 2                |

<sup>a</sup>: "In addition, to the 92% S results, 3% were SDD (MIC 4 to 8  $\mu$ g/mL) and 5% were R (MIC >16  $\mu$ g/mL) to cefepime"

# Why Do We Need a Minimum of N=30?

- Less statistical validity of data
  - Small numbers can skew the data

# How Reliable is a Report of 80% Susceptible for *E. coli* and Ciprofloxacin?

| Sample size | % S (95% CI) |
|-------------|--------------|
| 10          | 44 to 97     |
| 100         | 71 to 87     |
| 1000        | 77 to 82     |

### What Do I Do If We Don't Reach N≥30?

- So what can you do?
  - Analyze multiple years add footnote
  - Report the results from N < 30 with a footnote</li>
    - "Calculated from fewer than the standard recommendation of 30 isolates"
  - Group several species within a genus together
  - Aggregate data from multiple smaller facilities with a similar patient population in the same geographic area



#### **Enhanced Antibiogram**

#### What Are Enhanced Antibiograms?

- Segregating cumulative antibiogram data by one or more of the following:
  - Location e.g., Inpatient vs Outpatient or ICU vs Oncology vs Non-ICU/Non-Oncology Wards
  - Specimen type e.g. urine or blood specific
  - Clinical condition e.g. cystic fibrosis, burn patients
  - Patient Age e.g., pediatrics vs adults
  - Resistance Phenotype e.g., MRSA, MSSA, carbapenem-resistant Enterobacteriaceae
  - Organism e.g. anaerobe antibiogram
  - ASP Antibiograms e.g. novel agents or last resort agents (colistin)
- Resistance Profiles
  - % Susceptible for combinations of drugs
  - % Susceptible for groups of organisms (e.g., all GNR from blood)

#### **Combination of Antimicrobial Agents**

|                           |         |     | % Susceptible |     |     |        |        |        |        |  |  |  |
|---------------------------|---------|-----|---------------|-----|-----|--------|--------|--------|--------|--|--|--|
|                           | No.     | CIP | CTZ           | IMP | TOB | CTZ    | IMP    | CTZ    | IMP    |  |  |  |
| Organism                  | Strains |     |               |     |     | and/or | and/or | and/or | and/or |  |  |  |
|                           |         |     |               |     |     | CIP    | CIP    | TOB    | TOB    |  |  |  |
| Pseudomonas<br>aeruginosa | 814     | 69  | 80            | 79  | 86  | 86     | 84     | 91     | 91     |  |  |  |



#### Organisms resistance characteristics

|                                           |                |     | % Susceptible |     |     |     |     |     |     |     |  |  |  |
|-------------------------------------------|----------------|-----|---------------|-----|-----|-----|-----|-----|-----|-----|--|--|--|
| Organism                                  | No.<br>Strains | CLI | DOX           | ERY | GEN | OXA | PEN | RIF | SXT | VAN |  |  |  |
| All S. aureus                             | 1317           | 80  | 98            | 50  | 93  | 68  | 13  | 98  | 96  | 100 |  |  |  |
| Oxacillin-resistant<br>S. aureus (MRSA)   | 449            | 44  | 96            | 4   | 79  | 0   | 0   | 95  | 94  | 100 |  |  |  |
| Oxacillin-susceptible<br>S. aureus (MSSA) | 904            | 97  | 99            | 72  | 99  | 100 | 18  | 99  | 97  | 100 |  |  |  |

|                |                                                    | % Susceptible                                                                                  |                                                                                                                                          |                                                                                                                                                                                       |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|----------------|----------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| No.<br>Strains | AMK                                                | AMP                                                                                            | CFZ                                                                                                                                      | CRO                                                                                                                                                                                   | CIP                                                                                                                                                                                                                                     | GEN                                                                                                                                                                                                                                                                              | IMP                                                                                                                                                                                                                                                                                                                             | PTZ                                                                                                                                                                                                                                                                                                                                                                        | TET                                                                                                                                                                                                                                                                                                                                                                                                          | SXT                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| 1163           | 63                                                 | -                                                                                              | 44                                                                                                                                       | 48                                                                                                                                                                                    | 46                                                                                                                                                                                                                                      | 74                                                                                                                                                                                                                                                                               | 64                                                                                                                                                                                                                                                                                                                              | 53                                                                                                                                                                                                                                                                                                                                                                         | 84                                                                                                                                                                                                                                                                                                                                                                                                           | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 233            | 30                                                 | -                                                                                              | 0                                                                                                                                        | 0                                                                                                                                                                                     | 6                                                                                                                                                                                                                                       | 48                                                                                                                                                                                                                                                                               | 100                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                          | 84                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| 361            | 5                                                  | -                                                                                              | 0                                                                                                                                        | 0                                                                                                                                                                                     | 0                                                                                                                                                                                                                                       | 28                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                          | 82                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| 569            | 100                                                | -                                                                                              | 84                                                                                                                                       | 99                                                                                                                                                                                    | 94                                                                                                                                                                                                                                      | 96                                                                                                                                                                                                                                                                               | 100                                                                                                                                                                                                                                                                                                                             | 88                                                                                                                                                                                                                                                                                                                                                                         | 87                                                                                                                                                                                                                                                                                                                                                                                                           | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|                | Strains           1163           233           361 | Strains         AMK           1163         63           233         30           361         5 | Strains         AMK         AMP           1163         63         -           233         30         -           361         5         - | Strains         AMIK         AMIP         CFZ           1163         63         -         44           233         30         -         0           361         5         -         0 | No.<br>Strains         AMIK         AMIP         CFZ         CRO           1163         63         -         44         48           233         30         -         0         0           361         5         -         0         0 | No.<br>Strains         AMK         AMP         CFZ         CRO         CIP           1163         63         -         44         48         46           233         30         -         0         0         6           361         5         -         0         0         0 | No.<br>Strains         AMIK         AMIP         CFZ         CRO         CIP         GEN           1163         63         -         44         48         46         74           233         30         -         0         0         6         48           361         5         -         0         0         0         28 | No.<br>Strains         AMK         AMP         CFZ         CRO         CIP         GEN         IMP           1163         63         -         44         48         46         74         64           233         30         -         0         0         6         48         100           361         5         -         0         0         0         28         0 | No.<br>Strains         AMIK         AMP         CFZ         CRO         CIP         GEN         IMP         PTZ           1163         63         -         44         48         46         74         64         53           233         30         -         0         0         6         48         100         0           361         5         -         0         0         28         0         0 | No.<br>Strains         AMIK         AMP         CFZ         CRO         CIP         GEN         IMP         PTZ         TET           1163         63         -         44         48         46         74         64         53         84           233         30         -         0         0         6         48         100         0         84           361         5         -         0         0         28         0         0         82 |  |  |



#### Non-Traditional Antibiograms

## What About Non-Traditional Antibiograms?

- Accumulate AST data outside of a single institution
  - Combined Regional Antibiograms
  - Antimicrobial Resistance Surveillance Programs (ARSP)
    - Creating an ARSP report New in M39-A5

| Characteristic    | Routine Antibiogram | Non-Traditional Antibiogram |
|-------------------|---------------------|-----------------------------|
| Study Period      | Annually            | Defined by study            |
| # of Institutions | One                 | Multiple                    |
| Presentation      | Table               | Report with I, M&M, R and D |

## When To Consider Utilizing Non-Traditional Antibiogram Data?

 The use of a local cumulative antibiogram is preferred to guide initial empiric therapy

- Non-Traditional antibiogram data:
  - Used when local AST data are not available, are limited in size or scope
  - Used as a benchmark to compare local data to regional and national findings

### **Combined REGIONAL Antibiogram**

- Compilation of data from facility-level antibiograms
- Susceptibility was defined by local labs in all circumstances
- Created a report with an Introduction, Methodology Notes, Antibiogram Table & Breakdown by Individual Organisms
- Methodology Notes Included:
  - Differences in breakpoints (eg cephalosporin & carbapenem breakpoints)
- Differences in agents within a class (eg ciprofloxacin vs levofloxacin)

|                                                          |                                                        | 2015 LOS ANGELES COUNTY ACUTE CARE HOSPITAL ANTIBIOGRAM<br>Gram-Negative Organisms |                             |                 |                |                |                 |                 |                 |                 |                |                                |                                   |  |
|----------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------|-----------------|----------------|----------------|-----------------|-----------------|-----------------|-----------------|----------------|--------------------------------|-----------------------------------|--|
|                                                          |                                                        | Peni                                                                               | cillins                     | (               | Cephalosporin  | IS             | Carbap          | penems          | A               | minoglycosid    | es             | Quinolone                      | Other                             |  |
| Percent<br>Susceptible<br>(Number of<br>isolates tested) | # of all isolates tested<br>(# of hospitals reporting) | Ampkillin/<br>Sulbactam                                                            | Piperaciilin/<br>Tazobactam | Ceftriaxone     | Ceftaridime    | Cefepime       | E rta penem     | Meropenem       | Amikacin        | Gentamkin       | Tobramycin     | Ciprofloxacin/<br>Levofloxaxin | Trimethoprim/<br>Suffamethoxazole |  |
| Acinetobacter sp.                                        | 3189<br>(66)                                           | -                                                                                  | 33<br>(1,873)               | 11<br>(1,475)   | 30<br>(2,184)  | 34<br>(1,864)  | R               | 53<br>(1,561)   | 43<br>(2,004)   | 41<br>(2,970)   | 46<br>(2,126)  | 33<br>(3,024)                  | 49<br>(2,859)                     |  |
| Citrobacter<br>freundii                                  | 1975<br>(43)                                           | R                                                                                  | 97<br>(1,823)               | 82<br>(1,869)   | 83<br>(1,503)  | 98<br>(1,713)  | 99<br>(1,156)   | 99<br>(1,142)   | 100<br>(1,536)  | 92<br>(1,924)   | 93<br>(1,138)  | 91<br>(1,975)                  | 81<br>(1,939)                     |  |
| Citrobacter koser                                        | 631<br>(23)                                            | -                                                                                  | 99<br>(631)                 | 96<br>(631)     | 97<br>(427)    | 100<br>(456)   | 100<br>(223)    | 100<br>(184)    | 99<br>(389)     | 99<br>(631)     | 99<br>(428)    | 99<br>(631)                    | 96<br>(601)                       |  |
| Enterobacter sp.                                         | 8122<br>(66)                                           | R                                                                                  | 82<br>(7,507)               | 80<br>(7,307)   | 82<br>(6,204)  | 96<br>(7,040)  | 96<br>(4,417)   | 99<br>(4,638)   | 100<br>(6,235)  | 97<br>(7,972)   | 96<br>(4,630)  | 96<br>(8,120)                  | 92<br>(8,018)                     |  |
| Escherichia coli                                         | 139212<br>(73)                                         | 55<br>(25,534)                                                                     | 93<br>(115,257)             | 86<br>(105,020) | 86<br>(95,157) | 86<br>(90,175) | 100<br>(78,427) | 100<br>(84,318) | 99<br>(104,151) | 86<br>(129,487) | 81<br>(67,956) | 70<br>(129,130)                | 66<br>(123,819)                   |  |
| Klebsiella sp.                                           | 30655<br>(72)                                          | -                                                                                  | 84<br>(25,586)              | 86<br>(23,006)  | 86<br>(19,120) | 85<br>(19,895) | 98<br>(15,578)  | 97<br>(17,025)  | 94<br>(22,223)  | 91<br>(27,934)  | 82<br>(16,128) | 86<br>(28,047)                 | 82<br>(26,934)                    |  |
| Morganella sp.                                           | 2235<br>(52)                                           |                                                                                    | 96<br>(2,233)               | 88<br>(2,055)   | 81<br>(1,811)  | 98<br>(1,921)  | 100<br>(1,148)  | 100<br>(1,127)  | 99<br>(1,913)   | 71<br>(2,234)   | 86<br>(1,358)  | 60<br>(2,231)                  | 55<br>(2,154)                     |  |
| Proteus sp.                                              | 16908<br>(68)                                          | -                                                                                  | 98<br>(15,836)              | 90<br>(15,682)  | 92<br>(13,067) | 92<br>(13,832) | 99<br>(9,018)   | 99<br>(9,903)   | 99<br>(13,470)  | 83<br>(16,554)  | 84<br>(10,176) | 68<br>(16,738)                 | 68<br>(16,491)                    |  |
| Providencia sp.                                          | 1618<br>(36)                                           |                                                                                    | 73<br>(1,542)               | 66<br>(1,404)   | 55<br>(1,315)  | 77<br>(1,285)  | 88<br>(228)     | 90<br>(553)     | 91<br>(1,442)   | 11<br>(1,259)   | 14<br>(960)    | 11<br>(1,512)                  | 46<br>(1,513)                     |  |
| Pseudomonas<br>aeruginosa                                | 22804<br>(73)                                          | R                                                                                  | 83<br>(20,040)              | R               | 82<br>(18,315) | 84<br>(19,015) | R               | 82<br>(14,261)  | 95<br>(19,491)  | 83<br>(22,271)  | 91<br>(19,850) | 69<br>(22,132)                 | R                                 |  |
| Serratia sp.                                             | 2676<br>(58)                                           | R                                                                                  | 91<br>(2,098)               | 90<br>(2,403)   | 91<br>(2,188)  | 97<br>(2,203)  | 97<br>(1,414)   | 98<br>(1,579)   | 97<br>(2,188)   | 97<br>(2,757)   | 85<br>(1,677)  | 88<br>(2,646)                  | 97<br>(2,544)                     |  |
| Stenotrophomonas<br>maltophilia                          | 1719<br>(50)                                           | R                                                                                  | R                           | R               | 37<br>(848)    | R              | R               | R               | R               | R               | R              | 79<br>(1,052)                  | 90<br>(1,548)                     |  |

ata not collected denoted by "-". intrinsic resistance

http://publichealth.lacounty.gov/acd/AntibiogramData.htm



#### Applications of Cumulative AST Data

### Many Applications of Cumulative AST data

| Stake Holder                       | Application                                                             |
|------------------------------------|-------------------------------------------------------------------------|
| Physicians                         | Empiric therapy decisions                                               |
| Clinical Microbiology Laboratories | Benchmarking, quality control, role of rapid diagnostics                |
| Antimicrobial Stewardship Programs | Antimicrobial therapy<br>recommendations and formulary<br>decisions     |
| Infection Prevention and Control   | Benchmarking to evaluate infection control practices                    |
| Pharmaceutical Industry            | Informs new drug development                                            |
| Regulatory                         | Informs regulatory practices                                            |
| Public Health                      | Monitoring changes in resistance levels and public health interventions |



### Increasing Awareness of Antibiograms

### Increasing Awareness of Antibiogram Data

Methods for Antibiogram Data Dissemination

Pocket guides/booklets

Laminated posters

Hospital newsletter article

Posting within hospital intranet/EMR

Email to all prescribers

Smartphone or tablet applications

Presentations



## Increasing Awareness of Antibiogram Data

Appendix G – provides stepwise instructions on presenting the local cumulative antibiogram data to healthcare professionals

- Explain purpose of the local cumulative antibiogram with a brief description of how the report is prepared
- Describe any software limitations
- Describe the rationale used for separating data into subgroups for the report
- Present graphs and charts for trends that are monitored each year



# Recommendations in the New M39-A5 for LTC

#### **Optimizing Culturing Practices in LTCF**

- Suspected Urinary Tract Infection To avoid over-culturing, consider developing a policy with the LTCF reference lab to determine if culture can be performed ONLY on urine specimens with significant pyuria (auto-reflex to culture).
- Suspected Pneumonia Obtain an expectorated sputum sample, if possible, for Gram stain and culture.
- Suspected Skin and Soft Tissue Infection If the skin infection is associated with an abscess or area of purulence, send a sample of the pus to the lab for culture.

# Responsibility for Cumulative Antibiogram Development

- The willingness of the referral lab to either develop the antibiogram or provide susceptibility reports for antibiogram development should be determined.
  - Guidelines that will be followed for antibiogram development (e.g., CLSI M39)
  - Information (e.g., bacteria, antibiotics, etc.) that should be included in the antibiogram
  - Method for collection of cumulative susceptibility data
  - Method for data analysis, presentation and formatting (e.g., time period of antibiogram, data segregation techniques, the utility of infection-specific reports, etc)
- Multiple Referral Labs
  - Variations in laboratory practice must be considered (breakpoints)
  - Data formatted the same way
  - Appropriate and correct data from each laboratory

#### Data Analysis Techniques

- First Isolate per Patient
  - First isolate per reporting period
- Handling of small numbers (≤30)
  - Consider combining data from multiple years
  - Consider combining species, if applicable
  - Consider using data from other sources
  - Evaluate current culturing practices to assure that all patients with suspected infection are being cultured appropriately.
  - Consider constructing a cumulative antibiogram from patients in the general community in age category 65 and older.

# More information and resources on the development of a LTCF Antibiogram

 <u>https://www.ahrq.gov/nhguide/toolkits/help-</u> <u>clinicians-choose-the-right-</u> <u>antibiotic/index.html</u>

#### Summary

- M39-A4 provides guidelines for creating a cumulative antibiogram
- There are 3 types of cumulative antibiograms
- Cumulative antibiograms can be stratified by different patient, hospital, or organism characteristics
- New Guidelines specific for LTCF will be in the new edition of M39-A5 coming out in 2020