

# Background

- Aortic stenosis (AS) is one the most common causes of valvular heart disease
- Heart failure symptoms are common in patients with severe AS
- Loop diuretics are often needed to maintain euvolemia and control symptoms
- Transcatheter aortic valve replacement (TAVR) is a treatment option for patients with symptomatic severe AS who are intermediate-high risk of mortality with surgical valve replacement
- After TAVR, cardiac output is improved immediately but reverse remodeling takes time
- Loop diuretic requirements may change after intervention

#### **Study Purpose:**

- Discern if there is a difference in readmissions rates in the first 30 days after TAVR in patients discharged on the same or different loop diuretic dose compared to admission dose
- Determine if these readmissions are related to acute kidney injury or heart failure exacerbations related to dose change

# Endpoints

#### **Primary Endpoint:**

- Hospital readmission within 30 days
- Secondary Endpoints:
- Hospital readmission within 7 days
- Hospital readmission within 90 days
- Time to first hospital readmission
- Rates of hospitalization for heart failure exacerbation and acute kidney injury

# Methods

**Retrospective Chart Review Inclusion Criteria:** 

- Admitted to University of Maryland Medical Center following TAVR
- On loop diuretic therapy before TAVR

**Exclusion Criteria**:

- Death during hospitalization
- End stage renal disease dialysis dependent
- Conversion to surgical aortic valve replacement

# **Statistical Analysis**

- Descriptive statistics used to describe patient demographics, clinical and laboratory data, rates of acute kidney injury and heart failure related readmissions
- Student t-test and Wilcoxon rank sum tests used to identify potential cofounders for continuous and categorical variables respectively
- Logistic regression model used to detect association between time to readmission, and impact of same or different diuretic dose on discharge
- p < 0.05 was set for statistical significance
- Analyses performed with SAS version 9.4

# Results

| 240 | p |
|-----|---|
| ٠   |   |
| ٠   |   |
| •   |   |
|     |   |

#### Table 1: Baseline Demographics

Male Age, Past Me Chron Pre Prior Atrial Admiss Socie Lengt Left V Serun Loop Dischar Acute Serun Left V Loop

\* Denotes statistical significance

# Changes in Diuretic Regimen and Impact on Readmission Rates Following Transcatheter Aortic Valve Replacement

Allie Wasik<sup>1</sup>, PharmD; Zachary Noel<sup>1</sup>, PharmD, BCPS; Anuj Gupta<sup>2</sup>, MD, FACC <sup>1</sup>University of Maryland School of Pharmacy; <sup>2</sup>University of Maryland School of Medicine; Baltimore, MD

- patient reviewed for study inclusion
- 104 patients were not on loop diuretic therapy
- 8 died during hospitalization
- 2 converted to surgical valve replacement
- 8 had no follow up data after TAVR
- 116 patients met inclusion criteria
  - 58 patients included that were discharged on same diuretic dose
  - 58 patients included that were discharged on different diuretic dose

|                                        | Same Diuretic Dose<br>(n = 58) | Different Diuretic<br>Dose (n = 58) | p-value |
|----------------------------------------|--------------------------------|-------------------------------------|---------|
| Gender                                 | 35 (60%)                       | 30 (51.7%)                          | 0.9     |
| ears                                   | 79                             | 79                                  | 0.3     |
| lical History                          |                                |                                     |         |
| c Kidney Disease                       | 14 (24.1%)                     | 14 (24.1%)                          | 1       |
| Failure                                |                                |                                     |         |
| uced Ejection Fraction                 | 21 (36.2%)                     | 27 (46.5%)                          | 0.4     |
| served Ejection Fraction               | 37 (63.8%)                     | 31 (53.4%)                          | 0.6     |
| alve Replacement                       | 8 (13.8%)                      | 10 (26.3%)                          | 0.8     |
| ibrillation                            | 28 (48.3%)                     | 28 (48.3%)                          | 1       |
| n Characteristics                      |                                |                                     |         |
| y of Thoracic Surgery Score            | 5.9                            | 6.7                                 | 0.2     |
| of Stay after TAVR, days               | 3.2                            | 5.3                                 | 0.01*   |
| entricular Ejection Fraction           | 48.7                           | 47.2                                | 0.3     |
| Creatinine, mg/dL                      | 1.13                           | 1.17                                | 0.9     |
| iuretic Dose, furosemide mg equivalent | 47.9                           | 54.7                                |         |
| e Characteristics                      |                                |                                     |         |
| Kidney Injury During Admission         | 6 (10.3%)                      | 15 (25.9%)                          | 0.03*   |
| Creatinine, mg/dL                      | 1.11                           | 1.13                                | 0.4     |
| entricular Ejection Fraction           | 52.6                           | 50.1                                | 0.2     |
| iuretic Dose, furosemide mg equivalent | 47.9                           | 37                                  | 0.03*   |

#### Figure 1: Admission and Discharge Diuretic Doses



| Results                    |                                          |                             |                                      |                                                            |  |  |
|----------------------------|------------------------------------------|-----------------------------|--------------------------------------|------------------------------------------------------------|--|--|
| Table 2: Readmission Rates |                                          |                             |                                      |                                                            |  |  |
|                            | Total<br>n (%)                           | Same Diuretic Dose<br>n (%) | Different Diuretic Dose<br>n (%)     | Odds Ratio (95% CI)<br>p-value                             |  |  |
| 7 Day                      | 13 (11.3%)                               | 10 (8.7%)                   | 3 (2.6%)                             | 0.23 (0.05, 0.95)<br>0.04*                                 |  |  |
| 30 Day                     | 36 (31.3%)                               | 20 (17.4%)                  | 16 (13.9%)                           | 0.70 (0.29 <i>,</i> 1.67)<br>0.4                           |  |  |
| 90 Day                     | 61 (53%)                                 | 37 (32.1%)                  | 24 (20.9%)                           | 0.60 (0.27, 1.30)<br>0.2                                   |  |  |
| * Denotes s                | tatistical signifi                       | cance                       |                                      |                                                            |  |  |
| Figure 2:                  | 30 Day Read                              | Imission Characteristics    |                                      |                                                            |  |  |
|                            | DIFFERENT DIURETIC DOSE SAME DIURETIC DO |                             |                                      | RETIC DOSE                                                 |  |  |
| Gastoi<br>Surgica          | intestinal Bleed                         | Deep Vein Thrombo           | sis Heart Failure<br>Mechanical Fall | <ul> <li>Surgical Site Infection</li> <li>Other</li> </ul> |  |  |
|                            | 13<br>6%<br>13%<br>6%<br>6%              | % 37% 19%                   | 25%                                  | 30%                                                        |  |  |
| Concl                      | usions                                   |                             |                                      |                                                            |  |  |

- No difference seen in hospital readmissions within 30 days for patients discharged on same or different loop diuretic dose following TAVR
- There was an increase in 7 day readmissions for patients discharged on same dose, however most patients were readmitted for stroke or mechanical fall
- The most frequent dose changes post-TAVR were dose reduction or discontinuation of loop diuretic
- There were no significant variables in the subgroup analyses (reduced vs preserved ejection fraction, acute kidney injury during admission)
- Dose titrations were common in clinic follow-up within 30 days after TAVR suggesting diuretic requirements change but may not be fully capturing that through hospital readmissions
- Careful decision making on diuretic doses post-TAVR and close outpatient follow-up are necessary to minimize hospital readmissions

### References

- 2017 AHA/ACC Focused Update on the 2014 AHA/ACC Guidelines for the Management of Valvular Heart Disease.
- Treibel TA et al. JACC 2018; 71: 860-871. Smith CR et al. N Eng J Med 2011; 364: 2187-2198.
- Leon MB et al. N Engl J Med 2016; 373: 1609-1620.
- Dauerman HL et al. Circ Cardiovasc Interven 2016; 9:
  - 003425.

# Disclosures

The authors of this presentation do not have any financial or personal relationships with any commercial entities to disclose that may have a direct or indirect impact on the subject matter of this presentation.